
Safety Area: All Text, Logos & Barcode should remain inside the Pink Dotted Lines

Bleed Area: All Backgrounds should extend to, but not past, the Blue Dotted Lines

J O H N G R A H A M - C U M M I N G

T H E
G N U M A K E

B O O K

T H E
G N U M A K E

B O O K

T
H

E
 G

N
U

 M
A

K
E

 B
O

O
K

T
H

E
 G

N
U

 M
A

K
E

 B
O

O
K

G
R

A
H

A
M

-
C

U
M

M
IN

GSHELVE IN:
COM

PUTERS/PROGRAM
M

ING

$34.95 ($40.95 CDN)

www.nostarch.com

TH E F I N EST I N G E E K E NTE RTA I N M E NT ™

S O L V E D .
P R O B L E M

G N U M A K E ,

S O L V E D .
P R O B L E M

G N U M A K E ,

GNU make is the most widely used build automation
tool, but it can be intimidating for new users and
its terse language can be tough to parse for even
experienced programmers. Those who run into dif-

potential untapped.
unsolved problems behind and GNU make’s vast
ficulties face a long, involved struggle, often leaving

The GNU Make Book demystifies GNU make and

a fast, thorough rundown of the basics of variables,
shows you how to use its best features. You’ll find

rules, targets, and makefiles. Learn how to fix waste-
fully long build times and other common problems,
and gain insight into more advanced capabilities,
such as complex pattern rules. With this utterly prag-

You’ll also learn how to:

• Master user-defined functions, variables, and path

progress toward becoming a more effective user.
matic manual and cookbook, you’ll make rapid

• Handle automatic dependency generation,
rebuilding, and non-recursive make

• Modify the GNU make source and take advantage
of the GNU Make Standard Library

handling

• Weigh the pitfalls and advantages of GNU make
parallelization

GNU make is known for being tricky to use, but it

will find The GNU Make Book to be an indispensable
guide to this indispensable tool.

based POPFile email filter and successfully petitioned

A B O U T T H E A U T H O R

John Graham-Cumming is a longtime GNU make
expert. He wrote the acclaimed machine learning–

the British government to apologize for its treatment of

from Oxford University and works at CloudFlare.
Alan Turing. He holds a doctorate in computer security

doesn’t have to be. Seasoned users and newbies alike

• Create makefile assertions and debug makefiles

Technical review
by Paul Smith,

maintainer of GNU make

The GNU Make Book

T H e G N U
M a k e B o o k

by John Graham-Cumming

San Francisco

The GNU Make Book. Copyright © 2015 by John Graham-Cumming.

All rights reserved. No part of this work may be reproduced or transmitted in any form or by any means,
electronic or mechanical, including photocopying, recording, or by any information storage or retrieval
system, without the prior written permission of the copyright owner and the publisher.

Printed on demand in USA

ISBN-10: 1-59327-649-4
ISBN-13: 978-1-59327-649-2

Publisher: William Pollock
Production Editor: Alison Law
Cover Illustration: Josh Ellingson
Interior Design: Octopod Studios
Developmental Editors: Greg Poulos and Leslie Shen
Technical Reviewer: Paul Smith
Copyeditor: Anne Marie Walker
Compositor: Susan Glinert Stevens
Proofreader: James Fraleigh
Indexer: Nancy Guenther

For information on distribution, translations, or bulk sales, please contact No Starch Press, Inc. directly:

No Starch Press, Inc.
245 8th Street, San Francisco, CA 94103
phone: 415.863.9900; info@nostarch.com
www.nostarch.com

Library of Congress Cataloging-in-Publication Data:

Graham-Cumming, John.
 The GNU make book / by John Graham-Cumming. -- 1st edition.
 pages cm
 Includes index.
 Summary: "Covers GNU Make basics through advanced topics, including: user-defined functions,
macros, and path handling; creating makefile assertions and debugging makefiles; parallelization;
automatic dependency generation, rebuilding targets, and non-recursive Make; and using the GNU Make
Standard Library"-- Provided by publisher.
 ISBN 978-1-59327-649-2 -- ISBN 1-59327-649-4
 1. GNU Emacs. 2. Text editors (Computer programs) 3. Make (Computer file) I. Title.
 QA76.76.T49G725 2015
 005.13--dc23
 2015007254

No Starch Press and the No Starch Press logo are registered trademarks of No Starch Press, Inc. Other
product and company names mentioned herein may be the trademarks of their respective owners. Rather
than use a trademark symbol with every occurrence of a trademarked name, we are using the names only
in an editorial fashion and to the benefit of the trademark owner, with no intention of infringement of the
trademark.

The information in this book is distributed on an “As Is” basis, without warranty. While every precaution
has been taken in the preparation of this work, neither the author nor No Starch Press, Inc. shall have any
liability to any person or entity with respect to any loss or damage caused or alleged to be caused directly or
indirectly by the information contained in it.

About the Author
John Graham-Cumming is a longtime GNU make expert. He wrote the
acclaimed machine learning–based POPFile email filter and successfully
petitioned the British government to apologize for its treatment of Alan
Turing. He holds a doctorate in computer security from Oxford University
and works at CloudFlare.

About the Technical Reviewer
Paul Smith has been the Free Software Foundation’s GNU make project
maintainer since 1996. He’s been using and contributing to free software
since the 1980s and to GNU/Linux since 1993. Professionally, he writes
networking and database system software. Personally, he enjoys biking and
scuba diving with his wife and kids.

B r i e f C o n t e n t s

Preface . xv

Chapter 1: The Basics Revisited . 1

Chapter 2: Makefile Debugging . 43

Chapter 3: Building and Rebuilding . 77

Chapter 4: Pitfalls and Problems . 109

Chapter 5: Pushing the Envelope . 161

Chapter 6: The GNU Make Standard Library . 187

Index . . 225

C o n t e n t s i n D e t a i l

Preface	 xv

1
The Basics Revisited	 1
Getting Environment Variables into GNU make . 1
Setting Variables from Outside the Makefile . 3
The Environment Used by Commands . 6
The $(shell) Environment . 7
Target-Specific and Pattern-Specific Variables . 9

Target-Specific Variables . . 10
Pattern-Specific Variables . 11

Version Checking . 13
MAKE_VERSION . 13
.FEATURES . 14
Detecting $(eval) . 16

Using Boolean Values . 16
Undefined Variables in Conditionals . 17
Consistent Truth Values . 18

Logical Operations Using Boolean Values . 19
User-Defined Logical Operators . 19
Built-in Logical Operators (GNU make 3.81 and Later) 20

Command Detection . 21
Delayed Variable Assignment . 22
Simple List Manipulation . 24
User-Defined Functions . . 25

The Basics . 26
Argument-Handling Gotchas . 26
Calling Built-in Functions . 27

Recent GNU make Versions: 3.81, 3.82, and 4.0 . 29
What’s New in GNU make 3.81 . . 29
What’s New in GNU make 3.82 . . 34
What’s New in GNU make 4.0 . . 38
What’s New in GNU make 4.1 . . 42

2
Makefile Debugging	 43
Printing the Value of a Makefile Variable . 43
Dumping Every Makefile Variable . 45
Tracing Variable Values . . 47

Tracing Variable Use . 47
How the Variable Tracer Works . . 48

Tracing Rule Execution . . 51
An Example . . 51
The SHELL Hack . 52
An Even Smarter SHELL Hack . . 53
GNU make 4.0 Tracing . 54

x Contents in Detail

Makefile Assertions . 55
assert . 55
assert_exists . 56
assert_target_directory . 57

An Interactive GNU make Debugger . 58
The Debugger in Action . 58
Breakpoints in Patterns . 60
Breakpoints in Makefiles . 61
Debugger Internals . 62

Dynamic Breakpoints in the GNU make Debugger . 65
Dynamic Breakpoints in Action . 65
The Easy Part . . 67
The Trick . 68
Rocket Science . . 69

An Introduction to remake . 69
Just Print and Trace . . 69
Debugging . 72
Targets, Macro Values, and Expansion . 74

3
Building and Rebuilding	 77
Rebuilding When CPPFLAGS Changes . 77

An Example Makefile . 78
Changing Our Example Makefile . 79
How Signature Works . 81
Limitations . 82

Rebuilding When a File’s Checksum Changes . 82
An Example Makefile . 83
Digesting File Contents . 83
The Modified Makefile . 84
The Hack in Action . . 85
Improving the Code . 86

Automatic Dependency Generation . 86
An Example Makefile . 87
makedepend and make depend . 88
Automating makedepend and Removing make depend 89
Making Deleted Files Disappear from Dependencies 90
Doing Away with makedepend . 91
Using gcc -MP . 92

Atomic Rules in GNU make . 92
What Not to Do . . 93
Using Pattern Rules . 93
Using a Sentinel File . 94

Painless Non-recursive make . . 96
A Simple Recursive Make . 97
A Flexible Non-recursive make System . 98
Using the Non-recursive make System . . 103
What About Submodules? . . 104

Contents in Detail xi

4
Pitfalls and Problems	 109
GNU make Gotcha: ifndef and ?= . 110

What ?= Does . 110
What ifndef Does . . 111

$(shell) and := Go Together . 111
$(shell) Explained . . 111
The Difference Between = and := . 112
The Hidden Cost of = . 113

$(eval) and Variable Caching . 115
About $(eval) . 115
An $(eval) Side Effect . 116
Caching Variable Values . 116
Speed Improvements with Caching . . 117
A Caching Function . 118
Wrapping Up . 119

The Trouble with Hidden Targets . 120
An Unexpected Error if the Hidden Target Is Missing 121
The -n Option Fails . 121
You Can’t Parallelize make . 121
make Does the Wrong Work if the Hidden Target Is Updated 122
You Can’t Direct make to Build foo.o . 122

GNU make’s Escaping Rules . 122
Dealing with $. . 123
Playing with % . . 123
Wildcards and Paths . 123
Continuations . 124
Comments . 124
I Just Want a Newline! . 124
Function Arguments: Spaces and Commas . 125
The Twilight Zone . . 126

The Trouble with $(wildcard) . 127
$(wildcard) Explained . 127
Unexpected Results . . 128
Unexpected Results Explained . 130

Making Directories . 131
An Example Makefile . 132
What Not to Do . . 132
Solution 1: Build the Directory When the Makefile Is Parsed 133
Solution 2: Build the Directory When all Is Built . 134
Solution 3: Use a Directory Marker File . . 134
Solution 4: Use an Order-Only Prerequisite to Build the Directory 135
Solution 5: Use Pattern Rules, Second Expansion, and a Marker File 136
Solution 6: Make the Directory in Line . 137

GNU make Meets Filenames with Spaces . 137
An Example Makefile . 137
Escape Spaces with \ . . 138
Turn Spaces into Question Marks . 140
My Advice . 140

xii Contents in Detail

Path Handling . . 141
Target Name Matching . . 142
Working with Path Lists . 142
Lists of Paths in VPATH and vpath . . 143
Using / or \ . 143
Windows Oddity: Case Insensitive but Case Preserving 144
Built-in Path Functions and Variables . . 145
Useful Functions in 3.81: abspath and realpath . 146

Usman’s Law . 147
The Human Factor . 147
Poor Naming . . 147
Silent Failure . 148
Recursive Clean . 148

Pitfalls and Benefits of GNU make Parallelization . 148
Using -j (or -jobs) . 149
Missing Dependencies . 150
The Hidden Temporary File Problem . 151
The Right Way to Do Recursive make . 153
Amdahl’s Law and the Limits of Parallelization . 154

Making $(wildcard) Recursive . 157
Which Makefile Am I In? . 158

5
Pushing the Envelope	 161
Doing Arithmetic . 161

Addition and Subtraction . 162
Multiplication and Division . 165
Using Our Arithmetic Library: A Calculator . 167

Making an XML Bill of Materials . 170
An Example Makefile and BOM . 170
How It Works . 171
Gotchas . 172

Advanced User-Defined Functions . 174
Getting Started Modifying GNU make . 174
Anatomy of a Built-In Function . 176
Reverse a String . . 177

GNU make 4.0 Loadable Objects . . 179
Using Guile in GNU make . 180
Self-Documenting Makefiles . 182

Documenting Makefiles with print-help . 185
The Complete help-system.mak . 185

6
The GNU Make Standard Library	 187
Importing the GMSL . 188
Calling a GMSL Function . 189
Checking the GMSL Version . 189

Contents in Detail xiii

Example Real-World GMSL Use . 190
Case-Insensitive Comparison . 190
Finding a Program on the Path . . 190
Using Assertions to Check Inputs . 191
Is DEBUG Set to Y? . 192
Is DEBUG Set to Y or N? . . 193
Using Logical Operators in the Preprocessor . 193
Removing Duplicates from a List . 194
Automatically Incrementing a Version Number . . 194

GMSL Reference . 196
Logical Operators . 196
Integer Arithmetic Functions . 198
Integer Comparison Functions . 203
Miscellaneous Integer Functions . 204
List Manipulation Functions . 205
String Manipulation Functions . 210
Set Manipulation Functions . 213
Associative Arrays . 216
Named Stacks . 218
Function Memoization . 220
Miscellaneous and Debugging Facilities . 221
Environment Variables . 223

Index	 225

P r e f a c e

I can no longer remember when I first encountered
a make program, but I imagine that, as with many
programmers, I was trying to build someone else’s
software. And like many programmers, I was probably
surprised and seduced by the simplicity of make’s syntax
without realizing the hidden depths and power of this
universal program.

After many years of working with a variety of real makefiles, blogging
about my findings, and answering GNU make questions from my blog readers,
I gained real-world insights and a deep appreciation for GNU make. Many of
these insights came from founding a company called Electric Cloud, where
one of my projects was to completely replicate the functionality of GNU
make. To do so, I absorbed the GNU make manual; wrote countless test make-
files to ensure that my “GNU make,” written in C++, worked like the real
program; and spent hours testing my version against enormous real-world
makefiles supplied by our customers.

xvi Preface

From my experiences with GNU make came my desire to write a book to
share tips, warnings, solutions, and further possibilities, big and small, that
would help programmers get the most out of this sometimes difficult but
ultimately indispensable program. The core make syntax results in makefiles
that are terse and understandable (at least small parts are) but can be diffi-
cult to maintain. On the bright side, make provides just enough functionality
for software builds without including too many extra features. Many make
replacements have found niches but have failed to displace GNU make (and
other similar make programs).

I hope this book will be a practical source of help for those of you who
wrangle makefiles daily or for anyone who has wondered, “Now, how do I
do that using make?” If you’re new to GNU make, I recommend that you start
with Chapter 1 and work your way through the book. Otherwise, feel free
to skip around. In any case, I hope you will find ideas to help you spend less
time debugging makefiles and more time running fast builds.

n o t e 	 Because GNU make is sensitive about different types of whitespace, whenever a tab
character is needed I’ve used  for clarity.

I’d particularly like to thank the following people who encouraged me in
my makefile hacking and GNU make programming: Mike Maciag, Eric Melski,
Usman Muzaffar (who pops up in Chapter 4), John Ousterhout, and the
maintainer of GNU make, Paul Smith. Finally, I’m very grateful to the team
at No Starch Press who jumped at the idea of publishing a book about GNU
make when I emailed them out of the blue; they have been a great team to
work with.

1
T h e B a s i c s R e v i s i t e d

This chapter covers material that might be
considered basic GNU make knowledge but

covers it to highlight commonly misunder­
stood functionality and clarify some confus­

ing parts of GNU make. It also covers the differences
between GNU make versions 3.79.1, 3.81, 3.82, and 4.0. If you’re working with
a version prior to 3.79.1, you should probably upgrade.

This chapter is in no way a replacement for the official GNU make man­
ual (Free Software Foundation, 2004). I highly recommend owning a copy
of it. You can also find the manual at http://www.gnu.org/make/manual.

Getting Environment Variables into GNU make
Any variable set in the environment when GNU make is started will be avail­
able as a GNU make variable inside the makefile. For example, consider the
following simple makefile:

$(info $(FOO))

2 Chapter 1

If FOO is set in the environment to foo when GNU make is run, this make­
file will output foo, thus verifying that FOO was indeed set to foo inside the
makefile. You can discover where FOO got that value by using GNU make’s
$(origin) function. Try adding to the makefile as follows (the new part is
in bold):

$(info $(FOO) $(origin FOO))

If a variable FOO is defined in the environment and automatically
imported into GNU make, $(origin FOO) will have the value environment.
When you run the makefile, it should give the output foo environment.

A variable imported from the environment can be overridden inside
the makefile. Simply set its value:

FOO=bar
$(info $(FOO) $(origin FOO))

This gives the output bar file. Notice how the value of $(origin FOO) has
changed from environment to file, indicating that the variable got its value
inside a makefile.

It’s possible to prevent a definition in a makefile from overriding the
environment by specifying the -e (or --environment-overrides) option on the
command line of GNU make. Running the preceding makefile with FOO set
to foo in the environment and the -e command line option gives the output
foo environment override. Notice here that FOO has the value from the environ­
ment (foo) and that the output of $(origin FOO) has changed to environment
override to inform us that the variable came from the environment, even
though it was redefined in the makefile. The word override appears only if
a variable definition was actually overridden; the $(origin) function simply
returns environment (no override) if the variable being tested was defined in
the environment, but there was no attempt to redefine it in the makefile.

If all you care about is whether the variable got its value from the
environment, then using $(firstword $(origin VAR)) is always guaranteed to
return the string environment if the variable VAR got its value from the envi­
ronment, regardless of whether -e is specified or not.

Suppose you absolutely want to guarantee that the variable FOO gets its
value inside the makefile, not from the environment. You can do this with
the override directive:

override FOO=bar
$(info $(FOO) $(origin FOO))

This will output bar override regardless of the value of FOO in the envi­
ronment or whether you specify the -e command line option. Note that
$(origin) tells you this is an override by returning override.

The Basics Revisited 3

The other way to get around -e and set the value of a variable is by set­
ting it on the GNU make command line. For example, revert your makefile to
the following:

FOO=bar
$(info $(FOO) $(origin FOO))

Running FOO=foo make -e FOO=fooey on the command line will output
fooey command line. Here $(origin FOO) returned command line. Now try adding
the override command back into the makefile:

override FOO=bar
$(info $(FOO) $(origin FOO))

If you run that same command on the command line (FOO=foo make -e
FOO=fooey), now it outputs bar override.

Confused? A simple rule exists to help you keep it all straight: the
override directive beats the command line, which beats environment over­
rides (the -e option), which beats variables defined in a makefile, which
beats the original environment. Alternatively, you can always use $(origin)
to find out what’s going on.

Setting Variables from Outside the Makefile
It’s common to have options in a makefile that can be set on the command
line when you start a build. For example, you might want to change the type of
build being performed or specify a target architecture outside the makefile.

Perhaps the most common use case is a debug option to specify whether
the build should create debuggable or release code. A simple way to handle
this is with a makefile variable called BUILD_DEBUG, which is set to yes in the
makefile and overridden on the command line when building the release
version. For example, the makefile might have the line BUILD_DEBUG := yes
somewhere near the start. The BUILD_DEBUG variable would then be used
elsewhere in the makefile to decide how to set compiler debug options.
Because BUILD_DEBUG is set to yes in the makefile, the default would be to do
debug builds. Then, at release time, this default can be overridden from the
command line:

$ make BUILD_DEBUG=no

Close to release time it might be tempting to set BUILD_DEBUG to no in the
shell’s startup script (for example, in .cshrc or .bashrc) so that all builds are
release rather than debug. Unfortunately, this doesn’t work because of how
GNU make inherits variables from the environment and how variables inside
a makefile override the environment.

4 Chapter 1

Consider this simple makefile that prints the value of BUILD_DEBUG, which
has been set to yes at the start of the makefile:

BUILD_DEBUG := yes
.PHONY: all
all: ; @echo BUILD_DEBUG is $(BUILD_DEBUG)

N o t e 	 In this example, the commands associated with the all target have been placed on the
same line as the target name by using a semicolon. The alternative would be:

BUILD_DEBUG := yes
.PHONY: all
all:
 @echo BUILD_DEBUG is $(BUILD_DEBUG)

But that requires a tab to start the commands. When the commands fit on a
single line, it’s clearer to use the semicolon format available in GNU make.

Now try running the makefile three times: once with no options, once
setting BUILD_DEBUG on GNU make’s command line, and once with BUILD_DEBUG
set in the environment:

$ make
BUILD_DEBUG is yes
$ make BUILD_DEBUG=no
BUILD_DEBUG is no
$ export BUILD_DEBUG=no
$ make
BUILD_DEBUG is yes

The last line shows that variables defined inside a makefile override
values in the environment. But note that if BUILD_DEBUG had not been defined
at all in the makefile, it would have been inherited from the environment
and imported into the makefile automatically.

The problem with definitions in a makefile overriding imported envi­
ronment variables can be solved with a GNU make hammer: the -e switch,
which makes the environment take precedence. But that affects every variable.

$ export BUILD_DEBUG=no
$ make
BUILD_DEBUG is yes
$ make -e
BUILD_DEBUG is no
$ make -e BUILD_DEBUG=maybe
BUILD_DEBUG is maybe

The Basics Revisited 5

The rule to remember is this: command line beats makefile beats environment.
A variable defined on the command line takes precedence over the same vari­
able defined in a makefile, which will take precedence over the same variable
defined in the environment.

It’s possible to have a BUILD_DEBUG variable that is set by default to yes and
can be overridden either on the command line or in the environment. GNU
make provides two ways to achieve this, both of which rely on checking to see
if the variable is already defined.

Here’s one way. Replace the setting of BUILD_DEBUG in the original make­
file with this:

ifndef BUILD_DEBUG
BUILD_DEBUG := yes
endif

Now if BUILD_DEBUG has not already been set (that’s what ndef means: not
defined), it will be set to yes; otherwise, it is left unchanged. Because typing
ifndef SOME_VARIABLE and endif is a bit unwieldy, GNU make provides a short­
hand for this pattern in the form of the ?= operator:

BUILD_DEBUG ?= yes
.PHONY: all
all: ; @echo BUILD_DEBUG is $(BUILD_DEBUG)

The ?= operator tells GNU make to set BUILD_DEBUG to yes unless it is
already defined, in which case leave it alone. Rerunning the test yields:

$ make
BUILD_DEBUG is yes
$ make BUILD_DEBUG=no
BUILD_DEBUG is no
$ export BUILD_DEBUG=no
$ make
BUILD_DEBUG is no

This technique provides the ultimate flexibility. A default setting in the
makefile can be overridden in the environment and by a temporary over­
ride on the command line:

$ export BUILD_DEBUG=no
$ make BUILD_DEBUG=aardvark
BUILD_DEBUG is aardvark

N o t e 	 There’s actually a subtle difference between ifndef and ?= in how they handle vari-
ables that are defined but set to an empty string. Whereas ifndef means if not empty
even if defined, the ?= operator treats an empty, defined variable as defined. This
difference is discussed in more detail in Chapter 4.

6 Chapter 1

The Environment Used by Commands
The environment GNU make uses when it runs commands (such as com­
mands in any rules it executes) is the environment GNU make started with,
plus any variables exported in the makefile—as well as a few variables GNU
make adds itself.

Consider this simple makefile:

FOO=bar

all: ; @echo FOO is $$FOO

First, notice the double $ sign: it’s an escaped $ and means that the
command passed to the shell by GNU make is echo FOO is $FOO. You can use
a double $ to get a single $ into the shell.

If you run this makefile with FOO not defined in the environment, you’ll
see the output FOO is. The value of FOO is not set because the makefile did
not specifically export FOO into the environment used by GNU make to run
commands. So when the shell runs the echo command for the all rule, FOO
is not defined. If FOO had been set to foo in the environment before GNU
make was run, you would see the output FOO is bar. This is because FOO was
already present in the environment GNU make started with and then picked
up the value bar inside the makefile.

$ export FOO=foo
$ make
FOO is bar

If you’re not sure whether FOO is in the environment but want to ensure
that it makes its way into the environment used for commands, use the
export directive. For example, you can ensure that FOO appears in the envi­
ronment of subprocesses by modifying the makefile, like so:

export FOO=bar

all: ; @echo FOO is $$FOO

Alternatively, you can just put export FOO on a line by itself. In both
cases FOO will be exported into the environment of the commands run for
the all rule.

You can remove a variable from the environment with unexport. To
ensure that FOO is excluded from the subprocess environment, whether or
not it was set in the parent environment, run the following:

FOO=bar
unexport FOO

all: ; @echo FOO is $$FOO

You’ll see the output FOO is.

The Basics Revisited 7

You might be wondering what happens if you export and unexport a vari­
able. The answer is that the last directive wins.

The export directive can also be used with target-specific variables to
modify the environment just for a particular rule. For example:

export FOO=bar

all: export FOO=just for all

all: ; @echo FOO is $$FOO

The makefile sets FOO to just for all for the all rule and bar for any
other rule.

Note that you can’t remove FOO from the environment of a specific rule
with a target-specific unexport. If you write all: unexport FOO, you’ll get an error.

GNU make also adds a number of variables to the subprocess
environment—specifically, MAKEFLAGS, MFLAGS, and MAKELEVEL. The MAKEFLAGS
and MFLAGS variables contain the flags specified on the command line:
MAKEFLAGS contains the flags formatted for GNU make’s internal use and
MFLAGS is only there for historical reasons. Never use MAKEFLAGS in a recipe.
If you really need to, you can set MFLAGS. The MAKELEVEL variable contains the
depth of recursive make calls, via $(MAKE), starting at zero. For more detail on
those variables, see the GNU make manual.

You can also ensure that every makefile variable gets exported, either
by writing export on a line on its own or by specifying .EXPORT_ALL_VARIABLES:.
But these shotgun approaches are probably a bad idea, because they fill the
subprocess environment with useless—and perhaps harmful—variables.

The $(shell) Environment
You might expect that the environment used by a call to $(shell) would be
the same as that used in the execution of a rule’s commands. In fact, it’s
not. The environment used by $(shell) is exactly the same as the environ­
ment when GNU make was started, with nothing added or removed. You can
verify this with the following makefile that gets the value of FOO from within
a $(shell) call and a rule:

export FOO=bar

$(info $(shell printenv | grep FOO))

all: ; @printenv | grep FOO

That outputs:

$ export FOO=foo
$ make
FOO=foo
FOO=bar

8 Chapter 1

No matter what you do, $(shell) gets the parent environment.
This is a bug in GNU make (bug #10593—see http://savannah.gnu.org/

bugs/?10593 for details). Part of the reason this hasn’t been fixed is that the
obvious solution—just using the rule environment in $(shell)—has a rather
nasty consequence. Consider this makefile:

export FOO=$(shell echo fooey)
all: ; @echo FOO is $$FOO

What’s the value of FOO in the rule for all? To get the value of FOO in the
environment for all, the $(shell) has to be expanded, which requires get­
ting the value of FOO—which requires expanding the $(shell) call, and so
on, ad infinitum.

In the face of this problem, GNU make’s developers opted for the easy
way out: they just haven’t fixed the bug.

Given that this bug isn’t going away for the moment, a workaround is
necessary. Luckily, most decent shells have a way to set an environment vari­
able inline. So the first makefile in this section can be changed to:

export FOO=bar

$(info $(shell FOO=$(FOO) printenv | grep FOO))

all: ; @printenv | grep FOO

This obtains the desired result:

$ make
FOO=bar
FOO=bar

It works by setting the value of FOO within the shell used by the $(shell)
function, using the FOO=$(FOO) syntax. Because the argument to $(shell) gets
expanded before execution, that becomes FOO=bar, taking its value from the
value of FOO set in the makefile.

The technique works fine if just one extra variable is needed in the
environment. But if many are needed, it can be a bit problematic, because
setting multiple shell variables on a single command line becomes messy.

A more comprehensive solution is to write a replacement for the
$(shell) command that does export variables. Here’s a function, env_shell,
which does just that:

env_file = /tmp/env
env_shell = $(shell rm -f $(env_file))$(foreach V,$1,$(shell echo export
$V=$($V) >> $(env_file)))$(shell echo '$2' >> $(env_file))$(shell /bin/bash -e
$(env_file))

Before I explain how this works, here’s how to use it in the previous
makefile. All you need to do is to change $(shell) to $(call env_shell). The

http://savannah.gnu.org/bugs/?10593
http://savannah.gnu.org/bugs/?10593

The Basics Revisited 9

first argument of env_shell is the list of variables that you need to add to
the environment, whereas the second argument is the command to be exe­
cuted. Here’s the updated makefile with FOO exported:

export FOO=bar

$(info $(call env_shell,FOO,printenv | grep FOO))

all: ; @printenv | grep FOO

When you run this you’ll see the output:

$ make
FOO=bar
FOO=bar

Now back to how env_shell works. First, it creates a shell script that adds
all the variables from its first argument to the environment; then, it exe­
cutes the command from its second argument. By default the shell script is
stored in the file named in the env_file variable (which was set to /tmp/env
earlier).

/tmp/env ends up containing

export FOO=bar
printenv | grep FOO

We can break down the call to env_shell into four parts:

•	 It deletes /tmp/env with $(shell rm -f $(env_file)).

•	 It adds lines containing the definition of each of the variables named in
the first argument ($1) with the loop $(foreach V,$1,$(shell echo export
$V=$($V) >> $(env_file))).

•	 It appends the actual command to execute, which is in the second argu­
ment ($2), with $(shell echo '$2' >> $(env_file)).

•	 It runs /tmp/env with a call to shell using the -e option: $(shell /bin/bash -e
$(env_file)).

It’s not a perfect solution; it would be nice if GNU make just figured out
what should be in the environment. But it’s a workable solution until GNU
make’s coders fix the bug.

Target-Specific and Pattern-Specific Variables
Every GNU make user is familiar with GNU make variables. And all GNU
make users know that variables essentially have global scope. Once they are
defined in a makefile, they can be used anywhere in the makefile. But how
many GNU make users are familiar with GNU make’s locally scoped target-
specific and pattern-specific variables? This section introduces target- and

10 Chapter 1

pattern-specific variables, and shows how they can be used to selectively
alter options within a build based on the name of a target or targets being
built.

Target-Specific Variables
Listing 1-1 shows a simple example makefile that illustrates the difference
between global and local scope in GNU make:

.PHONY: all foo bar baz

u VAR = global scope

all: foo bar
all: ; @echo In $@ VAR is $(VAR)

foo: ; @echo In $@ VAR is $(VAR)

v bar: VAR = local scope
bar: baz
bar: ; @echo In $@ VAR is $(VAR)

baz: ; @echo In $@ VAR is $(VAR)

Listing 1-1: An example makefile with four phony targets

This makefile has four targets: all, foo, bar, and baz. All four targets
are phony; because we’re interested only in illustrating global and local
scope for now, this makefile doesn’t actually make any files.

The all target requires that foo and bar be built, whereas bar depends
on baz. The commands for each target do the same thing—they print the
value of variable VAR using a shell echo.

The VAR variable is initially defined at u to have the value global scope.
That’s the value VAR will have anywhere in the makefile—unless, of course,
that value is overridden using a target- or pattern-specific variable.

To illustrate local scope, VAR is redefined to local scope at v for the rule
that creates bar. A target-specific variable definition is exactly like a nor­
mal variable definition: it uses the same =, :=, +=, and ?= operators, but it is
preceded by the name of the target (and its colon) for which the variable
should be defined.

If you run GNU make on this makefile, you’ll get the output shown in
Listing 1-2.

$ make
In foo VAR is global scope
In baz VAR is local scope
In bar VAR is local scope
In all VAR is global scope

Listing 1-2: Output from Listing 1-1 showing globally and locally scoped variables

The Basics Revisited 11

You can clearly see that GNU make follows its standard depth-first, left-
to-right search pattern. First it builds foo, because it’s the first prerequisite
of all. Then it builds baz, which is a prerequisite of bar, the second prerequi­
site of all. Then it builds bar and, finally, all.

Sure enough, within the rule for bar the value of VAR is local scope. And
because there’s no local definition of VAR in either all or foo, VAR has the
value global scope in those rules.

But what about baz? The makefile output shows that the value of VAR
in baz is local scope, yet there was no explicit target-specific definition of
VAR for baz. This is because baz is a prerequisite of bar and so has the same
locally scoped variables as bar.

Target-specific variables apply not just to a target, but also to all that
target’s prerequisites, as well as all their prerequisites, and so on. A target-
specific variable’s scope is the entire tree of targets, starting from the target
for which the variable was defined.

Note that because all, foo, bar, and baz have exactly the same recipe, it’s
possible to write them all on a single line, as shown here:

all foo bar baz: ; @echo In $@ VAR is $(VAR)

But in this section, I’ve avoided having multiple targets because this
sometimes causes confusion (many GNU make users think that this line rep­
resents a single rule that would run once for all, foo, bar, and baz, but it is
actually four separate rules).

Pattern-Specific Variables
Pattern-specific variables work in a manner similar to target-specific variables.
But instead of being defined for a target, they are defined for a pattern and
are applied to all targets that match that pattern. The following example
is similar to Listing 1-1 but has been modified to include a pattern-specific
variable:

.PHONY: all foo bar baz

VAR = global scope

all: foo bar
all: ; @echo In $@ VAR is $(VAR)

foo: ; @echo In $@ VAR is $(VAR)

bar: VAR = local scope
bar: baz
bar: ; @echo In $@ VAR is $(VAR)

baz: ; @echo In $@ VAR is $(VAR)

u f%: VAR = starts with f

12 Chapter 1

The last line u sets VAR to the value starts with f for any target begin­
ning with f and followed by anything else (that’s the % wildcard). (It is also
possible to use multiple targets to accomplish this. But don’t worry about
that for now.)

Now if you run make, you get the following output:

$ make
In foo VAR is starts with f
In baz VAR is local scope
In bar VAR is local scope
In all VAR is global scope

This is the same as in Listing 1-2, except that in the rule for foo the
value of VAR has been set to starts with f by the pattern-specific definition.

It’s worth noting that this is unrelated to GNU make pattern rules. You
can use the pattern-specific variable definition to change the value of a
variable in a normal rule. You can also use it with a pattern rule.

For example, imagine that a makefile uses the built-in %.o: %.c
pattern rule:

%.o: %.c
commands to execute (built-in):
 $(COMPILE.c) $(OUTPUT_OPTION) $<

It would be possible to set a variable on every .o file that rule builds
using a pattern-specific variable. Here’s how to add the -g option to CFLAGS
for every .o file:

%.o: CFLAGS += -g

It’s not uncommon in a project to have a standard rule for compiling
files and to need a slightly different version of that rule for a specific file,
or set of files, that otherwise use the same command. For example, here’s
a makefile that builds all the .c files in two subdirectories (lib1 and lib2)
using a pattern rule:

lib1_SRCS := $(wildcard lib1/*.c)
lib2_SRCS := $(wildcard lib2/*.c)

lib1_OBJS := $(lib1_SRCS:.c=.o)
lib2_OBJS := $(lib2_SRCS:.c=.o)

.PHONY: all
all: $(lib1_OBJS) $(lib2_OBJS)

u %.o: %.c ; @$(COMPILE.C) -o $@ $<

First, the makefile gets the list of all .c files in lib1/ into the variable
lib1_SRCS, and the C files in lib2/ into lib2_SRCS. Then it converts these to lists
of object files using a substitution reference that changes .c to .o and stores

The Basics Revisited 13

the results in lib1_OBJS and lib2_OBJS. The pattern rule in the last line u
uses the GNU make built-in variable COMPILE.C to run a compiler that com­
piles a .c file into a .o file. The makefile builds all the objects in lib1_OBJS
and lib2_OBJS because they are prerequisites of all. Both lib1_OBJS and
lib2_OBJS contain a list of .o files corresponding to .c files. When GNU make
searches for the .o files (the prerequisites of all), it finds that they are miss­
ing but that it can use the %.o: %.c rule to build then.

This works fine if all the .c files have the same compilation options.
But now suppose that the .c file lib1/special.c requires the -Wcomment option
to prevent the compiler from warning about an oddly written comment.
Obviously, it would be possible to change the value of CPPFLAGS globally by
adding the line CPPFLAGS += -Wcomment to the makefile. But this change would
affect every compilation, which is probably not what you want.

Fortunately, you can use a target-specific variable to just alter the value
of CPPFLAGS for that single file, like so:

lib1/special.o: CPPFLAGS += -Wcomment

The line alters the value of CPPFLAGS just for the creation of lib1/special.o.
Now suppose that an entire subdirectory requires a special CPPFLAGS

option to maximize optimization for speed (the -fast option to gcc, for
example). Here, a pattern-specific variable definition is ideal:

lib1/%.o: CPPFLAGS += -fast

This does the trick. Any .o files that are built in lib1/ will be built using
the -fast command line option.

Version Checking
Because GNU make is regularly updated and new features are added all
the time, it’s important to know the version of GNU make that’s running
or whether a specific GNU make feature is available. You can do this in two
ways: either look at the MAKE_VERSION variable or look in the .FEATURES variable
(added in GNU make 3.81). It’s also possible to check for specific features,
like $(eval).

MAKE_VERSION
The MAKE_VERSION variable contains the version number of GNU make that’s
processing the makefile where MAKE_VERSION is referenced. Here’s an example
makefile that prints the version of GNU make and stops:

.PHONY: all 
all: ; @echo $(MAKE_VERSION)

14 Chapter 1

And here’s the output generated when GNU make 3.80 parses this makefile:

$ make
3.80

What if you want to determine that version 3.80 or later of GNU make is
handling your makefile? If you assume the version number is always in the
form X.YY.Z or X.YY, the following code fragment will set the ok variable to
non-empty if the version mentioned in need is equal to or less than the run­
ning version of GNU make.

need := 3.80
ok := $(filter $(need),$(firstword $(sort $(MAKE_VERSION) $(need))))

If ok is not blank, the required version of GNU make or later is being
used; if it’s blank, the version is too old. The code fragment works by creat­
ing a space-separated list of the running version of GNU make in MAKE_VERSION
and the required version (from need), and sorting that list. Suppose the run­
ning version is 3.81. Then $(sort $(MAKE_VERSION) $(need)) will be 3.80 3.81.
The $(firstword) of that is 3.80, so the $(filter) call will keep 3.80. Thus, ok
will be non-empty.

Now suppose the running version is 3.79.1. Then $(sort $(MAKE_VERSION)
$(need)) will be 3.79.1 3.80, and $(firstword) will return 3.79.1. The $(filter)
call will remove 3.79.1 and thus ok will be empty.

N o t e 	 This fragment won’t work correctly with versions of GNU make starting at 10.01,
because it assumes a single-digit major version number. Fortunately, that’s a long
way off!

.FEATURES
GNU make 3.81 introduced the .FEATURES default variable, which contains a
list of supported features. In GNU make 3.81, seven features are listed and
supported in .FEATURES:

archives  Archive (ar) files using the archive(member) syntax

check-symlink  The -L and --check-symlink-times flags

else-if  Else branches in the non-nested form else if X

jobserver  Building in parallel using the job server

order-only  order-only prerequisite support

second-expansion  Double expansion of prerequisite lists

target-specific  Target-specific and pattern-specific variables

The Basics Revisited 15

GNU make 3.82 adds and supports the following:

oneshell  The .ONESHELL special target

shortest-stem  Using the shortest stem option when choosing between
pattern rules that match a target

undefine  The undefine directive

And GNU make 4.0 adds the following:

guile  If GNU make was built with GNU Guile support, this will be pres­
ent and the $(guile) function will be supported.

load  The ability to load dynamic objects to enhance the capabilities of
GNU make is supported.

output-sync  The -O (and --output-sync) command line options are
supported.

You can find more details on these and many other features in “Recent
GNU make Versions: 3.81, 3.82, and 4.0” on page 29.

To check if a specific feature is available, you can use the following
is_feature function: it returns T if the requested feature is supported or an
empty string if the feature is missing:

is_feature = $(if $(filter $1,$(.FEATURES)),T)

For example, the following makefile uses is_feature to echo whether the
archives feature is available:

.PHONY: all 
all: ; @echo archives are $(if $(call is_feature,archives),,not)available

And here’s the output using GNU make 3.81:

$ make
archives are available

If you want to check whether the .FEATURES variable is even supported,
either use MAKE_VERSION as described in “MAKE_VERSION” on page 13 or simply
expand .FEATURES and see whether it’s empty. The following makefile frag­
ment does just this, setting has_features to T (for true) if the .FEATURES vari­
able is present and contains any features:

has_features := $(if $(filter default,$(origin .FEATURES)),$(if $(.FEATURES),T))

The fragment first uses $(origin) to check that the .FEATURES variable is a
default variable; this way, has_features is not fooled if someone has defined
.FEATURES in the makefile. If it is a default variable, the second $(if) checks
whether or not .FEATURES is blank.

16 Chapter 1

Detecting $(eval)
The $(eval) function is a powerful GNU make feature that was added in ver­
sion 3.80. The argument to $(eval) is expanded and then parsed as if it were
part of the makefile, allowing you to modify the makefile at runtime.

If you use $(eval), it is important to check that the feature is available in
the version of GNU make reading your makefile. You could use MAKE_VERSION
as described earlier to check for version 3.80. Alternatively, you could use
the following fragment of code that sets eval_available to T only if $(eval) is
implemented:

$(eval eval_available := T)

If $(eval) is not available, GNU make will look for a variable called
eval eval_available := T and try to get its value. This variable doesn’t exist,
of course, so eval_available will be set to the empty string.

You can use eval_available with ifneq to generate a fatal error if $(eval)
isn’t implemented.

ifneq ($(eval_available),T)
$(error This makefile only works with a Make program that supports $$(eval))
endif

The eval_available function is especially useful if you can’t check
MAKE_VERSION—if, for example, your makefile is being run using a non-GNU

make tool, such as clearmake or emake.

Using Boolean Values
Both GNU make’s $(if) function and ifdef construct treat the empty string
and undefined variables as false, and anything else as true. But they differ
subtly in how they evaluate their arguments.

The $(if) function—that is, $(if X,if-part,else-part)—expands if-part
if X is not empty and else-part otherwise. When using $(if), the condition is
expanded and the value after expansion is tested for emptiness. The follow­
ing code fragment reports that it took the else-part branch:

EMPTY =
VAR = $(EMPTY)
$(if $(VAR),$(info if-part),$(info else-part))

Whereas the next fragment follows the if-part branch, because
HAS_A_VALUE has a non-empty value.

HAS_A_VALUE = I'm not empty
$(if $(HAS_A_VALUE),$(info if-part),$(info else-part))

The Basics Revisited 17

The ifdef construct works slightly differently: its argument is the name
of a variable and is not expanded:

ifdef VAR
if-part...
else
else-part...
endif

The preceding example executes if-part if the variable VAR is non-empty
and else-part if VAR is empty or undefined.

Undefined Variables in Conditionals
Because GNU make treats an undefined variable as simply empty, ifdef
should really be called ifempty—especially because it treats a defined-but-
empty variable as undefined. For example, the following fragment reports
that VAR is undefined:

VAR =
ifdef VAR
$(info VAR is defined)
else
$(info VAR is undefined)
endif

In an actual makefile, this might not have been the intended result. You
can ask for warnings of undefined variables with the --warn-undefined-variables
command line option.

One further nuance of ifdef is that it does not expand the variable
VAR. It simply looks to see if it has been defined to a non-empty value. The
following code reports that VAR is defined even though its value, when com­
pletely expanded, is an empty string:

EMPTY =
VAR = $(EMPTY)  
ifdef VAR
$(info VAR is defined)
else
$(info VAR is not defined)
endif

GNU make 3.81 introduced yet another wrinkle to ifdef: its argument is
expanded so that the name of the variable being tested can be computed.
This has no effect on conditionals, such as ifdef VAR, but allows you to write

VAR_NAME = VAR
VAR = some value 
ifdef $(VAR_NAME)
$(info VAR is defined)

18 Chapter 1

else
$(info VAR is not defined)
endif

This is exactly the same as:

VAR = some value
ifdef VAR
$(info VAR is defined)
else
$(info VAR is not defined)
endif

In both cases VAR is examined to see whether it is empty, exactly as
described earlier, and in both output VAR is defined.

Consistent Truth Values
GNU make treats any non-empty string as true. But if you work with truth
values and $(if) a lot, it can be helpful to use just one consistent value for
true. The following make-truth function turns any non-empty string into the
value T:

make-truth = $(if $1,T)

Notice how we can drop the else part of the $(if), because it’s empty.
Throughout this book I’ll drop arguments that aren’t necessary rather than
polluting makefiles with extraneous trailing commas. But there’s nothing
to stop you from writing $(if $1,T,) if it makes you more comfortable.

All of the following calls to make-truth return T:

u $(call make-truth,)
$(call make-truth,true)
$(call make-truth,a b c)

Even u returns T, because arguments to functions called using $(call)
do not have any modifications made to them before being placed in $1, $2,
and so on—not even the removal of leading or trailing space. So the second
argument is a string with a single space in it, not the empty string.

All the following return an empty string (for false):

v $(call make-truth,)
EMPTY =
$(call make-truth,$(EMPTY))
VAR = $(EMPTY)
$(call make-truth,$(VAR))

Look carefully at the difference between u and v: whitespace in GNU
make can be very significant!

The Basics Revisited 19

Logical Operations Using Boolean Values
GNU make had no built-in logical operators until version 3.81, when $(or)
and $(and) were added. However, it’s easy to create user-defined functions
that operate on Boolean values. These functions often use GNU make’s $(if)
function to make decisions. $(if) treats any non-empty string as 'true' and
an empty string as 'false'.

User-Defined Logical Operators
Let’s create a user-defined version of the simplest logical operator, or. If
either parameter is true (that is, a non-empty string), the result should
also be a non-empty string. We can achieve this by just concatenating the
arguments:

or = $1$2

You can use the make-truth function in “Consistent Truth Values” on
page 18 to clean up the result of the or so that it’s either T for true or an
empty string for false:

or = $(call make-truth,$1$2)

Or for a more compact version you just can write:

or = $(if $1$2,T).

All the following return T:

$(call or, ,)
$(call or,T,)
$(call or, ,)
$(call or,hello,goodbye my friend)

The only way to return false from or is to pass in two empty arguments:

EMPTY=
$(call or,$(EMPTY),)

Defining and is a little more complex, requiring two calls to $(if):

and = $(if $1,$(if $2,T))

There’s no need to wrap this in make-truth because it always returns T
if its arguments are non-empty and the empty string if either argument is
empty.

Defining not is just a single $(if):

not = $(if $1,,T)

20 Chapter 1

With and, or, and not defined, you can quickly create other logical
operators:

nand = $(call not,$(call and,$1,$2)) nor = $(call not,$(call or,$1,$2))
xor = $(call and,$(call or,$1,$2),$(call not,$(call and,$1,$2)))

These all also have simplified versions that just use $(if):

nand = $(if $1,$(if $2,,T),T)
nor = $(if $1$2,,T)
xor = $(if $1,$(if $2,,T),$(if $2,T))

As an exercise, try writing an xnor function!

Built-in Logical Operators (GNU make 3.81 and Later)
GNU make 3.81 and later has built-in and and or functions that are faster
than the versions defined earlier, so it’s preferable to use those whenever
possible. You should test whether the and and or functions already exist and
only define your own if they don’t.

The easiest way to determine whether and and or are defined is to try
using them:

have_native_and := $(and T,T)
have_native_or := $(or T,T)

These variables will be T only if built-in and and or functions are present.
In versions of GNU make prior to 3.81 (or in GNU make-emulating programs
like clearmake), have_native_and and have_native_or will be empty because
GNU make will not find functions called and or or, nor will it find variables
called and T, T, or or T, T!

You can examine the results of these calls using ifneq and define your
own functions only if necessary, like so:

ifneq ($(have_native_and),T)
and = $(if $1,$(if $2,T))
endif
ifneq ($(have_native_or),T)
or = $(if $1$2,T)
endif

$(info This will be T: $(call and,T,T))

You may be concerned that you’ve written $(call and,...) and
$(call or,...) everywhere, using call to invoke your own logic operators.
Won’t you need to change all these to $(and) and $(or)—removing call to
use the built-in operator?

The Basics Revisited 21

That is not necessary. GNU make allows any built-in function to be
called with the call keyword, so both $(and...) and $(call and,...) invoke
the built-in operator. The opposite, however, is not true: it’s not possible to
call the user-defined function foo by writing $(foo arg1,arg2). You must write
$(call foo,arg1,arg2).

So defining your own and and or functions, and behaving gracefully in
the presence of GNU make 3.81 or later, requires only the lines shown earlier
to define and and or—no other changes are necessary.

Note that there’s an important difference between the built-in func­
tions and user-defined versions. The built-in versions will not evaluate both
arguments if the first argument fully determines their truth value. For
example, $(and $a,$b) doesn’t need to look at the value of $b if $a is false;
$(or $a,$b) doesn’t need to look at the value of $b if $a is true.

If you need that behavior, you can’t use the preceding user-defined ver­
sions because when you do a $(call) of a function, all the arguments are
expanded. The alternative is to replace a $(call and,X,Y) with $(if X,$(if Y,T))
and $(call or,X,Y) with $(if X,T,$(if Y,T)).

Command Detection
Sometimes it can be useful for a makefile to quickly return an error mes­
sage if a specific piece of software is missing from the build system. For
example, if the makefile needs the program curl, it can be helpful to deter­
mine at parse time, when the makefile is loaded by make, if curl is present
on the system rather than waiting until partway through a build to discover
that it’s not there.

The simplest way to find out if a command is available is to use the which
command inside a $(shell) call. This returns an empty string if the com­
mand is not found and the path to the command if it is, which works well
with make’s empty string means false, non-empty string means true logic.

So, for example, the following sets HAVE_CURL to a non-empty string if
curl is present:

HAVE_CURL := $(shell which curl)

Then you can use HAVE_CURL to stop the build and output an error if curl
is missing:

ifndef HAVE_CURL
$(error curl is missing)
endif

The following assert-command-present function wraps this logic into
a single handy function. Calling assert-command-present with the name
of a command causes the build to immediately exit with an error if the

22 Chapter 1

command is missing. The following example uses assert-command-present to
check for the presence of a curl and a command called curly:

assert-command-present = $(if $(shell which $1),,$(error '$1' missing and needed for this build))

$(call assert-command-present,curl)
$(call assert-command-present,curly)

Here’s what happens if you run this code on a system that has curl but
no curly:

$ make
Makefile:4: *** 'curly' missing and needed for this build. Stop.

If a command is used only by certain build targets, it can be useful to
only use assert-command-present for the relevant target. The following make­
file will check for the existence of curly only if the download target will actu­
ally be used as part of the build:

all: ; @echo Do all...

download: export _check = $(call assert-command-present,curly)
download: ; @echo Download stuff...

The first line of the download target sets a target-specific variable
called _check and exports it to the result of the call to assert-command-present.
This causes the $(call) to happen only if download is actually used as part of
the build, because the value of _check will get expanded when it is being pre­
pared for insertion into the environment of the recipe. For example, make
all will not check for the presence of curly:

$ make
Do all...
$ make download
Makefile:5: *** 'curly' missing and needed for this build. Stop.

Note that this makefile does define a variable called _, which you could
access as $(_) or even $_. Using the underscore as a name is one way to indi­
cate that the variable is just a placeholder, and its value should be ignored.

Delayed Variable Assignment
GNU make offers two ways to define a variable: the simple := operator and
the recursive = operator. The simple operator := evaluates its right side
immediately and uses the resulting value to set the value of a variable. For
example:

BAR = before
FOO := $(BAR) the rain
BAR = after

The Basics Revisited 23

This snippet results in FOO having the value before the rain, because at
the time FOO was set using :=, BAR had the value before.

In contrast,

BAR = before
FOO = $(BAR) the rain
BAR = after

This results in FOO having the value $(BAR) the rain, and $(FOO) evaluates
to after the rain. That happens because = defines a recursive variable (one
that can contain references to other variables using the $() or ${} syntax)
whose value is determined every time the variable is used. In contrast,
simple variables defined using := have a single fixed value determined at
the time they were defined by expanding all the variable references straight
away.

Simple variables have a distinct speed advantage because they are fixed
strings and don’t need to be expanded each time they are used. They can
be tricky to use because it’s common for makefile writers to assume that
variables can be set in any order since recursively defined variables (those
set with =) get their final value only when they are used. Nevertheless, simple
variables are usually faster to access than recursive variables, and I err on
the side of always using := if I can.

But what if you could have the best of both worlds? A variable that
gets set only when it is first used but gets to set to a fixed value that doesn’t
change. This would be useful if the variable’s value requires a lot of compu­
tation but needs to be computed only once at most, and perhaps not at all
if the variable never gets used. It is possible to achieve this with the $(eval)
function.

Consider the following definition:

SHALIST = $(shell find . -name '*.c' | xargs shasum)

The SHALIST variable will contain the name and SHA1 cryptographic
hash of every .c file found in the current directory and all subdirectories.
This could take a long time to evaluate. And defining SHALIST using = means
that this expensive call occurs every time you use SHALIST. If you use it more
than once, this could significantly slow down execution of the makefile.

On the other hand, if you define SHALIST using :=, the $(shell) would
only be executed once—but it would happen every time the makefile is
loaded. This might be inefficient if the value of SHALIST is not always needed,
like when running make clean.

We want a way to define SHALIST so the $(shell) doesn’t happen if SHALIST
is never used and is called only once if SHALIST is. Here’s how to do it:

SHALIST = $(eval SHALIST := $(shell find . -name '*.c' | xargs shasum))$(SHALIST)

24 Chapter 1

If $(SHALIST) is ever evaluated, the $(eval SHALIST := $(shell find . -name
'*.c' | xargs shasum)) part gets evaluated. Because := is being used here,
it actually does the $(shell) and redefines SHALIST to be result of that call.
GNU make then retrieves the value of $(SHALIST), which has just been set by
the $(eval).

You can see what’s happening by creating a small makefile that uses the
$(value) function (which shows the definition of a variable without expand­
ing it) to examine the value of SHALIST without evaluating it:

SHALIST = $(eval SHALIST := $(shell find . -name '*.c' | xargs
shasum))$(SHALIST)

$(info Before use SHALIST is: $(value SHALIST))
u $(info SHALIST is: $(SHALIST))

$(info After use SHALIST is: $(value SHALIST))

Running that with a single foo.c file in the directory results in the fol­
lowing output:

$ make
Before use SHALIST is: $(eval SHALIST := $(shell find . -name '*.c' | xargs
shasum))$(SHALIST)
SHALIST is: 3405ad0433933b9b489756cb3484698ac57ce821 ./foo.c
After use SHALIST is: 3405ad0433933b9b489756cb3484698ac57ce821 ./foo.c

Clearly, SHALIST has changed value since the first time it was used at u.

Simple List Manipulation
In GNU make, lists elements are separated by spaces. For example, peter paul
and mary is a list with four elements, as is C:\Documents And Settings\Local User.
GNU make has a several built-in functions for manipulating lists:

$(firstword)  Gets the first word in a list.

$(words)  Counts the number of list elements.

$(word)  Extracts a word at a specific index (counting from 1).

$(wordlist)  Extracts a range of words from a list.

$(foreach)  Lets you iterate over a list.

Getting the first element of a list is trivial:

MY_LIST = a program for directed compilation
$(info The first word is $(firstword $(MY_LIST)))

That would output The first word is a.

The Basics Revisited 25

You can get the last element by counting the number of words in
the list, N, and then taking the Nth word. Here’s a lastword function that
returns the last word in a list:

u lastword = $(if $1,$(word $(words $1),$1))
MY_LIST = a program for directed compilation
$(info The last word is $(call lastword,$(MY_LIST)))

The $(if) at u is necessary because if the list were empty, $(words $1)
would be 0 and $(word 0,$1) would generate a fatal error. The preceding
example outputs The last word is compilation.

N o t e 	 Versions 3.81 and later of GNU make have a built-in lastword function, which is
quicker than the preceding implementation.

Chopping the first word off a list is simply a matter of returning a
sublist range from the second element to the end. GNU make’s built-in
$(wordlist S,E,LIST) function returns a range of list elements from LIST,
starting with the element at index S and ending at index E (inclusive):

notfirst = $(wordlist 2,$(words $1),$1)
MY_LIST = a program for directed compilation
$(info $(call notfirst,$(MY_LIST)))

You don’t have to worry about the empty list in the preceding example,
because $(wordlist) doesn’t complain if its second argument isn’t a valid
index. That example outputs program for directed compilation.

Chopping the last element off a list requires some more mental gymnas­
tics, because there’s no simple way to do arithmetic in make: it’s not possible to
just write $(wordlist 1,$(words $1)–1, $1). Instead, we can define a notlast func­
tion that adds a dummy element to the start of the list and chops off the
last element by using the original list length as the end index for $(wordlist).
Then, because we added a dummy element, we need to remember to chop
that off by setting the start index for $(wordlist) at 2:

notlast = $(wordlist 2,$(words $1),dummy $1)
MY_LIST = a program for directed compilation
$(info $(call notlast,$(MY_LIST)))

And that outputs a program for directed.

User-Defined Functions
This section is about defining make functions within a makefile. In
Chapter 5, you’ll learn how to modify the source of GNU make to define
even more complex functions using C. We’ve used plenty of user-defined
functions in previous sections, but now we’ll take a closer look.

26 Chapter 1

The Basics
Here’s a very simple make function that takes three arguments and makes a
date with them by inserting slashes between the three arguments:

make_date = $1/$2/$3

To use make_date, you $(call) it like this:

today := $(call make_date,5,5,2014)

That results in today containing 5/5/2014.
The function uses the special variables $1, $2, and $3, which contain the

arguments specified in the $(call). There’s no maximum number of argu­
ments, but if you use more than nine, you need parentheses—that is, you
can’t write $10 but instead must use $(10). If the function is called with miss­
ing arguments, the content of those variables will be undefined and treated
as an empty string.

The special argument $0 contains the name of the function. In the pre­
ceding example, $0 is make_date.

Because functions are essentially variables that reference some special
variables that are created and filled in automatically by GNU make for you (if
you use the $(origin) function on any of the argument variables [$1, etc.],
they are classed as automatic just like $@), you can use built-in GNU make
functions to build up complex functions.

Here’s a function that uses the $(subst) function to turn every / into a \
in a path:

unix_to_dos = $(subst /,\,$1)

Don’t be worried about the use of / and \ in this code. GNU make does
very little escaping, and a literal \ is most of the time an actual backslash
character. You’ll read more about how make handles escaping in Chapter 4.

Argument-Handling Gotchas
make starts processing a $(call) by splitting the argument list on commas
to set the variables $1, $2, and so on. The arguments are then expanded so
that these variables are completely expanded before they are ever referenced.
It’s as if make used := to set them. If expanding an argument has a side effect,
such as calling $(shell), that side effect will always occur as soon as the
$(call) is executed, even if the argument never gets used by the function
being called.

One common problem is that the splitting of arguments can go wrong
if an argument contains a comma. For example, here’s a simple function
that swaps its two arguments:

swap = $2 $1

The Basics Revisited 27

If you do $(call swap,first,argument,second), make doesn’t have any way of
knowing whether the first argument was meant to be first,argument or just
first. It will assume the latter and ends up returning argument first instead
of second first,argument.

You have two ways around this. First, you could simply hide the first
argument inside a variable. Because make doesn’t expand the arguments
until after splitting, a comma inside a variable will not cause any confusion:

FIRST := first,argument
SWAPPED := $(call swap,$(FIRST),second)

The other approach is to create a simple variable that contains just a
comma and use that instead:

c := ,
SWAPPED := $(call swap,first$cargument,second)

Or even call that , variable and use it (with parentheses):

, := ,
SWAPPED := $(call swap,first$(,)argument,second)

As we’ll see in Chapter 4, giving variables clever names like , can be
useful but also error prone.

Calling Built-in Functions
It’s possible to use the $(call) syntax with make’s built-in functions. For
example, you could call $(info) like this:

$(call info,message)

This means that you can pass any function name as an argument to a
user-defined function and $(call) it without needing to know whether it’s
built in; therefore, it lets you create functions that act on functions. For
example, you can create the classic map function from functional program­
ming, which applies a function to every member of a list and returns the
resulting list:

map = $(foreach a,$2,$(call $1,$a))

The first argument is the function to call, and the second is the list to
iterate over. Here’s an example use of map—iterating over a list of variable
names and printing out the defined value and the expanded value of each
variable:

print_variable = $(info $1 ($(value $1) -> $($1)))

print_variables = $(call map,print_variable,$1)

28 Chapter 1

VAR1 = foo
VAR2 = $(VAR1)
VAR3 = $(VAR2) $(VAR1)

$(call print_variables,VAR1 VAR2 VAR3)

The print_variable function takes the name of a variable as its first and
only argument, and returns a string consisting of the name of the variable,
its definition, and its value. The print_variables function simply applies
print_variable to a list of variables using map. Here’s the output of the make­
file snippet:

$ make
VAR1 (foo -> foo) VAR2 ($(VAR1) -> foo) VAR3 ($(VAR2) $(VAR1) -> foo foo)

Functions in make can also be recursive: it’s possible for a function to
$(call) itself. The following is a recursive implementation of the reduce func­
tion from functional programming, which takes two arguments: a function
that will be called by reduce and a list to process.

reduce = $(if $(strip $2),$(call reduce,$1,$(wordlist 2,$(words $2),$2), \
$(call $1,$(firstword $2),$3)),$3)

The first argument (the function) is repeatedly called with two argu­
ments: the next element of the list is reduce’s second argument and the
result of the previous call to the function.

To see this in action, here’s a uniq function that removes duplicates
from a list:

check_uniq = $(if $(filter $1,$2),$2,$2 $1)
uniq = $(call reduce,check_uniq,$1)
$(info $(call uniq,c b a a c c b a c b a))

The output here is c b a. This works because reduce will call check_uniq
with each member of the input list, building up a new list from the result
of check_uniq. The check_uniq function just determines whether an element is
present in the given list (using the built-in function filter) and, if not pres­
ent, returns the list with the element appended.

To see that in action, here’s a modified version that uses $(info) to out­
put the arguments sent to check_uniq on each invocation:

check_uniq = $(info check_uniq ($1) ($2))$(if $(filter $1,$2),$2,$2 $1)
uniq = $(call reduce,check_uniq,$1)
$(info $(call uniq,c b a a c c b a c b a))

And here’s the output:

$ make
check_uniq (c) ()
check_uniq (b) (c)

The Basics Revisited 29

check_uniq (a) (c b)
check_uniq (a) (c b a)
check_uniq (c) (c b a)
check_uniq (c) (c b a)
check_uniq (b) (c b a)
check_uniq (a) (c b a)
check_uniq (c) (c b a)
check_uniq (b) (c b a)
check_uniq (a) (c b a)
 c b a

If you don’t need to preserve order, then using the built-in $(sort)
function will be faster than this user-defined function since it also removes
duplicates.

Recent GNU make Versions: 3.81, 3.82, and 4.0
GNU make changes slowly, and new releases (both major and minor) become
available only every few years. Because of this slow release cycle, it’s common
to come across older versions of GNU make and useful to know the differ­
ences between them. This section assumes that the oldest common version
in use is 3.79.1 (which was released on June 23, 2000) and highlights major
changes in releases 3.81, 3.82, and 4.0.

What’s New in GNU make 3.81
GNU make 3.81 was released on April 1, 2006, three and a half years after
the last version (GNU make 3.80), and it was packed with goodies: support
for OS/2, a new command line option, new built-in variables, new condi­
tionals, and new functions. For a complete list of changes, see the NEWS file
in the GNU make 3.81 source code distribution.

.SECONDEXPANSION

One frustrating problem users of GNU make run into is that the automatic
variables are valid and assigned only when a rule’s commands are run; they
are not valid as part of the rule definition. For example, it’s not possible to
write foo: $@.c to mean that foo should be made from foo.c, even though $@
will have the value foo when that rule’s commands are executed. That’s frus­
trating, because it would be nice to not have to repeat yourself like this:

foo:foo.c

Before version 3.81, GNU make supported using $$@ (note the two $ signs)
in the prerequisite list of a rule (this syntax comes from SysV make). For
example, it was possible to say foo: $$@.c, and it was equivalent to foo: foo.c.
That is, $$@ had the value that $@ has in the rule’s commands. To get that
functionality in GNU make 3.81 and later, you must define .SECONDEXPANSION
in the makefile. As a bonus, GNU make supports all the standard automatic
variables in the rule definition (although note that automatic variables like

30 Chapter 1

$$ will always be blank because they cannot be computed when the makefile
is being parsed). This happens because GNU make will expand the prereq­
uisite list of a rule twice: once when it reads the makefile and once again
when searching for what to make.

You can use second expansion for more than just automatic variables.
User-defined variables can also be second expanded, and they’ll end up get­
ting the last value to which they were defined in the makefile. For example,
you can do the following:

.SECONDEXPANSION:

FOO = foo

all: $$(FOO)
all: ; @echo Making $@ from $?

bar: ; @echo Making $@

FOO = bar

This gives the following output:

$ make
Making bar
Making all from bar

When the makefile was read, all: $$(FOO) was expanded to all: $(FOO).
Later, when figuring out how to build all, $(FOO) was expanded to bar—that
is, the value FOO had when makefile parsing ended. Note that if you enable
.SECONDEXPANSION and have filenames with $s in them, the $s will need to be
escaped by writing $$.

else

Another feature introduced in GNU make 3.81 was support for non-nested
else branches by having the conditional on the same line as the else. For
example, it’s possible to write:

ifdef FOO
$(info FOO defined)
else ifdef BAR
$(info BAR defined)
else
$(info BAR not defined)
endif

That syntax will be familiar to anyone who has used a language that
supports else if, elseif, or elsif. This is GNU make’s way of having else and
if on the same line.

The Basics Revisited 31

Previously, the code would have looked like this:

ifdef FOO
$(info FOO defined)
else
ifdef BAR
$(info BAR defined)
else
$(info BAR not defined)
endif
endif

That’s a lot messier and much harder to read than the version with non-
nested else branches.

The -L Command Line Option

The command line option -L (and its long equivalent, --check-symlink-times)
causes make to consider the modification time of the symlink and the modi­
fication time of the file pointed to by the symlink as GNU make decides
which files need to be remade. Whichever is more recent is taken as the
modification time. This can be useful if a build uses symlinks to point to
different versions of source files because changing the symlink will change
the modification time and force a rebuild.

.INCLUDE_DIRS

The .INCLUDE_DIRS variable contains the list of directories that make will search
when looking for makefiles that are included using the include directive. This
variable is set by the standard list of directories built into GNU make and can
be modified by the -I command line option. Although it’s possible to change
the value of .INCLUDE_DIRS in the actual makefile with = or :=, this has no effect
on how GNU make searches for makefiles.

For example, running make -I /usr/foo on Linux with the following
makefile outputs /usr/foo /usr/local/include /usr/local/include /usr/include:

$(info $(.INCLUDE_DIRS))
all: ; @true

.FEATURES

The .FEATURES variable expands to a list of features that GNU make sup­
ports and can be used to determine if a specific feature is available. With
GNU make 3.81 on Linux, the list of .FEATURES is target-specific order-only
second-expansion else-if archives jobserver check-symlink. This means that
GNU make 3.81 supports target- and pattern-specific variables, has order-
only prerequisites, supports second-expansion (.SECONDEXPANSION), supports
else if non-nested conditionals, supports ar files, supports parallel mak­
ing using the job server, and supports the new -L command line option for
checking symlinks.

32 Chapter 1

To test whether a specific feature is available, you can use $(filter). For
example:

has-order-only := $(filter order-only,$(.FEATURES))

This line sets has-order-only to true if the version of make running has
order-only prerequisite support. This isn’t backward compatible, though;
for example, .FEATURES would expand to an empty list in GNU make 3.80,
indicating that target-specific variables are not available even though they
are. A backward compatible check would first need to determine whether
.FEATURES is present by seeing if it is non-blank.

.DEFAULT_GOAL

Normally, if no goal is specified on the command line, make will build the
first target it sees in the first makefile it parses. It’s possible to override this
behavior by setting the .DEFAULT_GOAL variable anywhere in a makefile. For
example, the following makefile will build all when run with no goal on the
command line, despite the fact that the first target encountered is called fail:

fail: ; $(error wrong)
.DEFAULT_GOAL = all
all: ; $(info right)

The .DEFAULT_GOAL variable can also be read to get the current default
goal; if set to blank (.DEFAULT_GOAL :=), make will automatically pick the next
target it encounters as the default goal.

MAKE_RESTARTS

The MAKE_RESTARTS variable is the count of the number of times that make
has restarted while performing makefile remaking. GNU make has a special
feature that allows makefiles to be rebuilt by make. This remaking happens
automatically when any makefile is included with include, as well as to
the makefile make first started with, and any set with the -f command line
option. make searches to see if there’s a rule to rebuild any of the makefiles.
If it finds one, the makefile is rebuilt just like any other file make is capable
of building, and GNU make restarts.

If GNU make has not restarted, MAKE_RESTARTS is blank, not 0.

New Functions

GNU make 3.81 also introduced a variety of built-in functions:

$(info text)  This function is like the existing $(warning) function, but
it prints the expanded text argument to STDOUT without reporting the
makefile and line number. For example, the following makefile gener­
ates the output Hello, World!:

$(info Hello, World!)
all: ; @true

The Basics Revisited 33

$(lastword LIST)  This function returns the last word of a GNU make list.
Previously this was possible by writing $(word $(words LIST),LIST), but
$(lastword) is more efficient. If you are using the GNU Make Standard
Library (GMSL), there’s a function called last, which is the same as
$(lastword). If you are using GNU make 3.81 and GMSL 1.0.6 or later, last
automatically uses the built-in lastword for speed.

$(flavor VAR)  This function returns the flavor of a variable (either
recursive for recursively expanded or simple for simply expanded). For
example, the following makefile prints that REC is recursive and SIM is
simple:

REC = foo
SIM := foo
$(info REC is $(flavor REC))
$(info SIM is $(flavor SIM))

all: ; @true

$(or arg1 arg2 ...) and $(and)  $(or) returns a non-blank string if any
of its arguments is non-blank, whereas $(and) returns a non-blank string
if and only if all of its arguments are non-blank. If you are using the
GMSL, and and or functions are part of the library. If you are using
GNU make 3.81 and GMSL 1.0.6 or later, the new built-in functions are
not overridden with the GMSL versions, which means that makefiles
that use GMSL are fully backward- and forward-compatible with GNU
make 3.81.

$(abspath DIR)  This function returns the absolute path of DIR relative
to the directory that GNU make was started in (taking into account any
-C command line options). The path has all . and .. elements resolved
and duplicate slashes removed. Note that GNU make does not check
whether the path exists; it just resolves the path elements to make an
absolute path. For example, the following makefile prints /home/jgc/bar
on my machine when it’s placed in /home/jgc:

$(info $(abspath foo/./..//////bar))

all: ; @true

$(realpath DIR)  This function returns the same result as $(abspath DIR)
except that any symbolic links are resolved. For example, if bar is sym­
linked to over-here, the following makefile would return /home/jgc/
over-here if read from /home/jgc:

$(info $(realpath ../jgc/./bar))

all: ; @true

34 Chapter 1

What’s New in GNU make 3.82
GNU make 3.82 was released four years after 3.81 and introduced a number
of new features—as well as several backward incompatibilities.

Backward Incompatibilities

The NEWS file for GNU make 3.82 starts with seven backward-incompatibility
warnings. Here’s a quick overview:

•	 In GNU make, the shell that executes a rule’s commands is invoked with
the -c command line option, which tells the shell to read the command
to be executed from the first non-parameter argument to the shell. For
example, when the following small rule is executed, make actually exe­
cutes execve("/bin/sh", ["/bin/sh", "-c", "echo \"hello\""], ...). To run
the echo "hello", make uses the shell /bin/sh and adds the -c command
line option to it.

all: ; @echo "hello"

But the POSIX standard for make was changed in 2008 to require
that -e must be specified on the shell command line. The default behav­
ior of GNU make 3.82 and later is to not pass -e unless the .POSIX special
target is specified. Anyone using this target in a makefile needs to watch
out for this change.

•	 The $? automatic variable includes the name of all prerequisites to a
target that caused a rebuild, even if they do not exist. Previously, any pre­
requisites that did not exist were not placed into $?.

•	 The $(wildcard) function had always returned a sorted list of files, but
this was never actually documented. This behavior changed in GNU
make 3.82 so that any makefile relying on a sorted list from $(wildcard) needs
to wrap it in a call to $(sort); for example, do $(sort $(wildcard *.c)) to
get a sorted list of .c files.

•	 It used to be possible to write a rule that mixed pattern targets and
explicit targets, like this:

myfile.out %.out: ; @echo Do stuff with $@

This had been undocumented and was completely removed in
GNU make 3.81, because it was never intended to work. It now results in
an error message.

•	 It’s no longer possible to have a prerequisite that contains an = sign,
even when escaped with \. For example, the following no longer works:

all: odd\=name

odd%: ; @echo Make $@

The Basics Revisited 35

If you need an equal sign in a target or prerequisite name, first
define a variable that expands to =, like so:

eq := =

all: odd$(eq)name
odd%: ; @echo Make $@

•	 Variable names can’t contain whitespace in GNU make 3.82. It was previ­
ously possible to do this:

has space := variable with space in name
$(info $(has space))

If you need a variable with a space in its name, first define another
variable that contains just a space and use it as follows. But watch out;
this sort of thing can be dangerous and hard to debug.

sp :=
sp +=
has$(sp)space := variable with space in name

$(info $(has space))

•	 The order in which pattern rules and pattern-specific variables are
applied used to be in the order in which they were found in the make­
file. This changed in GNU make 3.82: they are now applied in 'shortest
stem' order. For example, the following makefile shows how different
pattern rules are used with GNU make 3.81 and 3.82.

all: output.o

out%.o: ; @echo Using out%.o rule
outp%.o: ; @echo Using outp%.o rule

The stem is the part of the pattern that is matched by the %. In GNU
make 3.81 and earlier, the out%.o rule matches because it is defined first:

$ make-3.81
Using out%.o rule

In GNU make 3.82 and later, the outp%.o rule is used because the
stem is shorter:

$ make-3.82
Using outp%.o rule

Similar behavior occurs with pattern-specific variables.

36 Chapter 1

New Command Line Option: --eval

The new --eval command line option causes make to run its argument
through $(eval) before parsing makefiles. For example, if you have this
makefile and run make --eval=FOO=bar, you’ll see the output FOO has value bar.

all: ; @echo FOO has value $(FOO)

This is because before the makefile is parsed, the line FOO=bar is treated
as if it were the first line in the makefile and it sets FOO to bar.

New Special Variables: .RECIPEPREFIX and .SHELLFLAGS

GNU make 3.82 introduced two new special variables:

.RECIPEPREFIX  GNU make uses a tab character as significant whitespace to
start the commands in a rule. You can change this with the .RECIPEPREFIX
variable. (If .RECIPEPREFIX is an empty string, then tab is used). For
example:

.RECIPEPREFIX = >

all:
> @echo Making all

Also, .RECIPEPREFIX can be changed over and over again in a make­
file as needed.

.SHELLFLAGS  This variable contains the parameters sent to the shell
when a rule’s commands are run. By default it is -c (or -ec if .POSIX: is
specified in the makefile). It can be read or changed if a different shell
is being used.

The .ONESHELL Target

When a rule’s commands are executed, each line is sent to the shell as a
separate shell invocation. With GNU make 3.82, a new special target called
.ONESHELL changes this behavior. If .ONESHELL: is set in the makefile, a single
shell invocation is used for all the lines in a rule. For example:

all:
 @cd /tmp
 @pwd

This does not output /tmp (unless make was started in /tmp) because each
line is executed in a separate shell. But with the .ONESHELL special target,
both lines are executed in the same shell and pwd will output /tmp.

.ONESHELL:
all:
 @cd /tmp
 @pwd

The Basics Revisited 37

Changing Variables with the private and undefine Keywords

A target-specific variable is normally defined for a target and all its pre­
requisites. But if the target-specific variable is prefixed with the keyword
private, it is defined only for that target, not its prerequisites.

In the following makefile, DEBUG is only set to 1 for the foo.o target
because it is marked as private:

DEBUG=0

foo.o: private DEBUG=1
foo.o: foo.c
 @echo DEBUG is $(DEBUG) for $@

foo.c: foo.in
 @echo DEBUG is $(DEBUG) for $@

Another new keyword in GNU make 3.82 is undefine, which makes it pos­
sible to undefine a variable:

SPECIAL_FLAGS := xyz
$(info SPECIAL_FLAGS $(SPECIAL_FLAGS))
undefine SPECIAL_FLAGS
$(info SPECIAL_FLAGS $(SPECIAL_FLAGS))

You can detect the difference between an empty variable and an unde­
fined variable using the $(flavor) function. For example, the following
outputs simple and then undefined:

EMPTY :=
$(info $(flavor EMPTY))
undefine EMPTY
$(info $(flavor EMPTY))

In versions of GNU make prior to 3.82, the define directive (which is used
to define a multiline variable) would always create a recursively defined
variable. For example, COMMANDS here would be a recursive variable, getting
expanded at each use:

FILE = foo.c

define COMMANDS
wc -l $(FILE)
shasum $(FILE)
endef

In GNU 3.82 it’s possible to add an optional =, :=, or += after the variable
name in a define statement. The default behavior is for the new variable to
be recursively expanded each time; this is the same as adding an =. Adding
a := creates a simple variable, expanding the body of the define at definition
time. And adding += appends multiple lines to an existing variable.

38 Chapter 1

The following makefile creates a simple variable called COMMANDS and
then adds lines to it:

FILE = foo.c

define COMMANDS :=
wc -l $(FILE)
shasum $(FILE)
endef

define COMMANDS +=
u

wc -c $(FILE)
endef

$(info $(COMMANDS))

Notice the extra blank line at u. It’s necessary for the wc -c $(FILE) to
appear on a new line after the shasum $(FILE). Without it the wc -c $(FILE)
would get appended to shasum $(FILE) without a newline.

What’s New in GNU make 4.0
The release of GNU make 4.0 introduced two major features: integration
with the GNU Guile language and an experimental option to dynamically
load objects to expand make’s functionality at runtime. In addition, new
command line options are especially helpful for debugging.

GNU Guile

The biggest change in GNU make 4.0 is the new $(guile) function, whose argu­
ment is code written in the GNU Guile language. The code is executed and
its return value is converted to a string, which gets returned by the $(guile)
function.

The ability to drop into another language adds enormous functional­
ity to GNU make. The following is a simple example of using Guile to check
whether a file exists:

 $(if $(guile (access? "foo.c" R_OK)),$(info foo.c exists))

Using GNU Guile inside GNU make is covered in further detail in
Chapter 5.

Loading Dynamic Objects

We don’t use the load operator in this book to define functions in C, but
defining functions in C and loading dynamic objects are explained in
Chapter 5.

The Basics Revisited 39

Syncing Output with --output-sync

If you use recursive make or use the job server to run rules in parallel, the
output produced by make can be very hard to read because output from dif­
ferent rules and sub-makes gets intermingled.

Consider the following (slightly contrived) makefile:

all: one two three four

one two:
 @echo $@ line start
 @sleep 0.1s
 @echo $@ line middle
 @echo $@ line finish

three four:
 @echo $@ line start
 @sleep 0.2s
 @echo $@ line middle
 @echo $@ line finish

This makefile contains four targets: one, two, three, and four. The tar­
gets will be built in parallel if you use the -j option. Two calls to sleep have
been added to simulate commands that get executed for different lengths
of time.

When run with the -j4 option, which runs four jobs in parallel, the out­
put might look like this:

$ make -j4
one line start
three line start
four line start
two line start
one line middle
two line middle
one line finish
two line finish
four line middle
three line middle
three line finish
four line finish

The output lines for each rule are mixed together, making it very hard
to decipher which output goes with which rule. Specifying -Otarget (or
--output-sync=target) causes make to keep track of which output is associated
with which target and flush the output only when the rule is complete. Now
the complete output for each target is clearly readable:

$ make -j4 -Otarget
two line start
two line middle

40 Chapter 1

two line finish
one line start
one line middle
one line finish
four line start
four line middle
four line finish
three line start
three line middle
three line finish

Specifying --output-sync=recurse handles recursive sub-makes—that is,
rules that invoke $(MAKE)—by buffering the entire output of the rule includ-
ing the sub-make and outputting it all in one go. This prevents sub-make
output from getting mixed together but can lead to long pauses in output
from make.

The --trace Command Line Option

You can use the new --trace option to trace the execution of rules in a
makefile. When specified on the make command line, the commands for
each rule that is executed are printed along with information about where
the rule is defined and why it was executed.

For example, this simple makefile has four targets:

all: part-one part-two

part-one: part-three
 @echo Make $@

part-two:
 @echo Make $@

part-three:
 @echo Make $@

Run it with --trace:

$ make --trace
makefile:10: target 'part-three' does not exist
echo Make part-three
Make part-three
makefile:4: update target 'part-one' due to: part-three
echo Make part-one
Make part-one
makefile:7: target 'part-two' does not exist
echo Make part-two
Make part-two

This shows you why each rule was run, where it is in the makefile, and
what commands were executed.

The Basics Revisited 41

New Assignment Operators: != and ::=

You can use the != operator to execute a shell command and set a variable
to the output of the command in a similar manner to $(shell). For example,
the following line uses != to get the current date and time into a variable:

CURRENTLY != date

An important subtlety with != is that the resulting variable is recursive,
so its value is expanded each time the variable is used. If the command exe­
cuted (that is, the RHS of the !=) returns a $, it will be interpreted by make as
a variable reference and expanded. For this reason it’s safer to use a $(shell)
with := instead of !=. (This was added for compatibility with BSD make and
might also be added to POSIX.)

The ::= operator is exactly like := and was added for POSIX compatibility.

The $(file) Function

You can use the new $(file) function to create or append to a file. The fol­
lowing makefile uses $(file) to create a file and append to it each time a
rule is executed. It creates a log of the makefile’s execution:

LOG = make.log

$(file > $(LOG),Start)

all: part-one part-two

part-one: part-three
 @$(file >> $(LOG),$@)
 @echo Make $@

part-two:
 @$(file >> $(LOG),$@)
 @echo Make $@

part-three:
 @$(file >> $(LOG),$@)
 @echo Make $@

The first $(file) creates the log file using the > operator, and subsequent
calls to $(file) use >> to append to the log:

$ make
Make part-three
Make part-one
Make part-two
$ cat make.log
Start
part-three
part-one
part-two

42 Chapter 1

It’s easy to see that the $(file) function is a useful addition to GNU make.

What’s New in GNU make 4.1
The most recent version of GNU make (at the time of this writing) is 4.1.
Released on October 5, 2014, it contains two useful changes and a large
number of bug fixes and small improvements.

New variables MAKE_TERMOUT and MAKE_TERMERR have been introduced.
These Boolean values are set to true (that is, they are not empty) if make
believes that stdout and stderr (respectively) are being sent to the console.

The $(file) function has been modified so that it’s possible to open a
file without writing anything to it. If no text argument is present, the file
is simply opened and closed again; you can use that to create an empty file
with $(file > $(MY_FILE)).

2
M a k e f i l e D e b u g g i n g

This chapter covers techniques that can
be useful when debugging makefiles. The

lack of built-in debugging tools, and the
complexities of following variables in make,

can make it very challenging to understand why a
particular target was (or more often was not) built.

The first recipe in this chapter shows the single most useful line that
you can add to a makefile; it’s the equivalent of a print statement inserted
into code for debugging.

Printing the Value of a Makefile Variable
If you’ve ever looked in a makefile, you’ll realize that makefile variables
(often just called variables) form the backbone of any make process. Variables
often define which files will be compiled, what command line parameters to

44 Chapter 2

pass to compilers, and even where to find the compiler. And if you’ve ever
tried to debug a makefile, you know that the number one question you ask
yourself is, “What is the value of variable X?”

GNU make doesn’t have a built-in debugger, nor does it provide the sort
of interactivity you’d get from a scripting language like Perl or Python. So
how do you figure out the value of a variable?

Take a look at the simple makefile shown in Listing 2-1, which just sets
various variables:

X=$(YS) hate $(ZS)
Y=dog
YS=(Y)(S)
Z=cat
ZS=(Z)(S)
S=s

all:

Listing 2-1: A simple makefile that sets various variables

What is the value of X?
The small size and simplicity of this makefile make it feasible to trace

through all the variable assignments, but even then it takes some work to
conclude that X is dogs hate cats. In a multi-thousand-line makefile, one that
fully utilizes the power of GNU make’s variables and functions, figuring out
the value of a variable can be laborious indeed. Fortunately, here’s a little
make recipe that does all the work for you:

print-%: ; @echo $* = $($*)

Now you can find the value of variable X with the following command:

$ make print-X

Because an explicit rule for the print-X target doesn’t exist, make looks
for a pattern rule, finds print-% (the % acts as a wildcard), and runs the asso-
ciated command. The command uses $*, a special variable that contains the
value matched by the % in the rule, to print the name of the variable, and
then does $($*) to get its value. This is a very useful technique in makefiles
because it allows the name of a variable to be computed. In this case, the
name of the variable to be printed comes from another variable, $*.

Here’s how this rule can be used to print the values of variables defined in
the makefile in Listing 2-1:

$ make print-X
X = dogs hate cats
$ make print-YS
YS = dogs
$ make print-S
S = s

Makefile Debugging 45

Sometimes it’s useful to know how a variable was defined. make has the
$origin function, which returns a string containing the type of a variable—
that is, whether it was defined in a makefile, on the command line, or in the
environment. Modifying print-% to print out origin information as well is easy:

print-%: ; @echo $* = '$($*)' from $(origin $*)

Now we see that YS is defined in the makefile:

$ make print-YS
YS = 'dogs' from file

If we override the value of YS on the command line, we’ll see:

$ make print-YS YS=fleas
YS = 'fleas' from command line

Because YS was set on the make command line, its $(origin) is now
command line and no longer file.

Dumping Every Makefile Variable
The previous section showed you how to print the value of a single make-
file variable using a special rule. But what if you want to print every vari-
able defined in a makefile?

Fortunately, GNU make 3.80 introduced a couple of new features that
make it feasible to print the value of all the variables defined in a makefile
using a single rule.

Consider Listing 2-1 again. It sets five variables: X, Y, Z, S, YS, and ZS.
Adding the following lines to the example creates a target called printvars
that will dump all the variables defined in the makefile, as shown in
Listing 2-2.

.PHONY: printvars
printvars:
 @$(foreach V,$(sort $(.VARIABLES)), \
 $(if $(filter-out environ% default automatic, \
 $(origin $V)),$(info $V=$($V) ($(value $V)))))

Listing 2-2: A target to print all variables

Before we look closely at how this works, try it out on your own, as
shown in Listing 2-3.

$ make printvars
MAKEFILE_LIST= Makefile helper.mak (Makefile helper.mak)
MAKEFLAGS= ()
S=s (s)
SHELL=/bin/sh (/bin/sh)

46 Chapter 2

X=dogs hate cats ($(YS) hate $(ZS))
Y=dog (dog)
YS=dogs ((Y)(S))
Z=cat (cat)
ZS=cats ((Z)(S))

Listing 2-3: All the variables from Listing 2-1 dumped by printvars

Notice how make has thrown in three extra variables that weren’t explic-
itly defined—MAKEFILE_LIST, MAKEFLAGS, and SHELL—but the rest are all defined
in the makefile. Each line shows the name of the variable, its fully substi-
tuted value, and the way in which it was defined.

It’s a lot easier to understand the long complex line used to print the
variables when it’s reformatted like this:

$(foreach V,$(sort $(.VARIABLES)),
 $(if

u $(filter-out environment% default automatic,$(origin $V)),
 $(info $V=$($V) ($(value $V)))
)
)

The .VARIABLES variable is a new feature in GNU make 3.80: its value is
a list of the names of all the variables defined in the makefile. First, the
code sorts it into order: $(sort $(.VARIABLES)). Then it goes through the
sorted list, variable name by variable name, and sets V to each name in
turn: $(foreach V,$(sort (.VARIABLES)),...).

For each variable name, the loop decides whether to print or ignore the
variable depending on how it was defined. If it’s a built-in variable, like $@ or
$(CC), or came from the environment, it shouldn’t get printed. This decision
is made by the predicate at u. It first figures out how the variable referenced
by $V was defined by calling $(origin $V). This call returns a string describing
how the variable was defined: environment for environment variables, file for
variables defined in a makefile, and default for things the make defines. The
$(filter-out) statement says if the result of $(origin) matches any of the pat-
terns environment%, default, or automatic (automatic is returned by $(origin) for
make’s automatic variable like $@, $<, and so on), then return an empty string;
otherwise, leave it alone. This means $(if)’s predicate will be true only if the
variable was defined in the makefile or set on the command line.

If $(if)’s predicate is true, then $(info $V=$($V) ($(value $V))) outputs
a message containing the name of the variable, its fully expanded value,
and its defined value. The $(value) function is another new feature in
GNU make 3.80; it outputs the value of a variable without expanding it. In
Listing 2-3, $(YS) would return the value dogs, but $(value YS) would return
(Y)(S). That is, $(value YS) shows us how YS is defined, not its final value.
That’s a very useful debugging feature.

Makefile Debugging 47

Tracing Variable Values
As a makefile grows, it can become difficult to figure out where a variable is
used. This is especially true because of GNU make’s recursive variables: the
use of a variable could be hidden deep inside some other variable declara-
tion in the makefile. This recipe shows how to trace individual variables as
they are used.

For this example, we’ll use the makefile in Listing 2-4 (the lines have
been numbered for later reference purposes).

 1 X=$(YS) hate $(ZS)
 2 Y=dog
 3 YS=(Y)(S)
 4 Z=cat
 5 ZS=(Z)(S)
 6 S=s
 7
 8 all: $(YS) $(ZS)
 9 all: ; @echo $(X)
10
11 $(YS): ; @echo $(Y) $(Y)
12 $(ZS): ; @echo $(Z) $(Z)

Listing 2-4: Example makefile for tracing

When run, this makefile prints:

dog dog
cat cat
dogs hate cats

As you can see in Listing 2-4, the makefile contains a number of recur-
sively defined variables and uses them in rule definitions and commands.

Tracing Variable Use
If you trace through Listing 2-4, you’ll see that the variable $(Y) is used on
lines 8, 9, and 11, and twice on line 12. It’s amazing how often variables are
used! The reason is that make gets the value of a recursively expanded vari-
able (such as YS in Listing 2-4) only when it is needed (that is, when the
variable is used and hence expanded), and recursively expanded variables
are frequently deeply nested.

It’s annoying enough to trace a variable through the simple makefile in
Listing 2-4, but doing so for a real makefile would be practically impossible.
Fortunately, it’s possible to get make to do the work for you with the following
code, which you should add to the start of the makefile to be traced (it’ll
only get used when explicitly called):

ifdef TRACE
.PHONY: _trace _value
_trace: ; @$(MAKE) --no-print-directory TRACE= \

48 Chapter 2

 $(TRACE)='$$(warning TRACE $(TRACE))$(shell $(MAKE) TRACE=$(TRACE) _value)'
_value: ; @echo '$(value $(TRACE))'
endif

Before we dive into how it works, here’s an example of using it to trace
the value of Y in our example makefile. To use the tracer, tell make to run the
trace target by setting the TRACE variable to the name of the variable you want
to trace. Tracing the variable Y looks like this:

$ make TRACE=Y
Makefile:8: TRACE Y
Makefile:11: TRACE Y
Makefile:12: TRACE Y
Makefile:12: TRACE Y
dog dog
cat cat
Makefile:9: TRACE Y
dogs hate cats

From the TRACE output you can see Y being used first on line 8 in the
definition of the all target, which references Y via the $(YS); then on line 11
the definition of the cats target, which also uses $(YS); then twice on line 12
with the two direct references to $(Y); and finally on line 9 via $(X), which
references $(YS), which references $(Y).

Likewise, we can use the tracer to find out where $(S) is used:

$ make TRACE=S
Makefile:8: TRACE S
Makefile:8: TRACE S
Makefile:11: TRACE S
Makefile:12: TRACE S
dog dog
cat cat
Makefile:9: TRACE S
Makefile:9: TRACE S
dogs hate cats

The output shows that S is first used twice on line 8 (the all target used
XS and YS, which both use S). Then S appears again on line 4 (because YS
is used) and line 12 (because XS is used). Finally, S is used twice on line 9,
when X is echoed as X is used by XS and YS, which both use S.

How the Variable Tracer Works
GNU make has a special $(warning) function that outputs a warning mes-
sage to STDERR and returns the empty string. At a high level, our tracer
code changes the value of the variable to be traced to include a $(warning)
message. Every time the variable is expanded, the warning is printed, and
whenever make outputs a warning message, it prints the name of the make-
file in use and the line number.

Makefile Debugging 49

For example, say the definition of Y is changed from

Y=dog

to

Y=$(warning TRACE Y)dog

Then, whenever $(Y) is expanded, a warning would be generated, and
$(Y) would have the value dog. And because $(warning) doesn’t return any
value, the value of Y is unaffected.

To add this $(warning) call, the tracer code first obtains the unexpanded
value of the variable to be traced, then prepends it with an appropriate
$(warning), and finally runs the desired make with the specially modified
value of the variable being examined. It uses the $(value) function, which
as you saw in Listing 2-2 enables you to get the unexpanded value of a
variable.

Here’s how the tracer works in detail. If TRACE is defined, make will pro-
cess the block of tracer definitions. In that case, because _trace is the first
target encountered, it will be the rule that runs by default. The _trace rule
contains a single, complex command:

@$(MAKE) --no-print-directory TRACE= \
 $(TRACE)='$$(warning TRACE $(TRACE))$(shell $(MAKE) TRACE=$(TRACE) _value)'

On the right side of the command is a $(shell) invocation that reruns
the makefile with a different goal. If we are tracing YS, for example, this
$(shell) runs the command:

make TRACE=YS _value

This will run the _value rule, which is defined like so:

_value: ; @echo '$(value $(TRACE))'

Because TRACE has been set to YS, this rule simply echoes the definition
of YS, which is the literal string (Y)(S). So that’s what $(shell) ends up
evaluating to.

That $(shell) call is in fact inside a command line variable definition
(usually called a command line override):

$(TRACE)='$$(warning TRACE $(TRACE))$(shell $(MAKE)TRACE=$(TRACE) _value)'

This adds the $(warning) needed to output the TRACE X messages. Notice
how the name of the variable being defined is a computed value: its name is
contained in $(TRACE). When tracing YS, this definition turns into:

YS='$(warning TRACE YS)$(Y)$(S)'

50 Chapter 2

The single quotes are used to prevent the shell from seeing the $ sign.
The double $ is used to prevent make from seeing the $. In either case a vari-
able expansion would occur (either in make or by the shell), and we want to
delay any variable expansion until YS is actually used.

Finally, the _trace rule recursively runs make:

make TRACE= YS='$(warning TRACE YS)$(Y)$(S)'

The value of TRACE is reset to the empty string, because this recursive
invocation of make should run the real rules rather than the tracer rules.
Also, it overrides the value of YS. Recall that variables defined on the com-
mand line override definitions in the makefile: even though YS is defined in
the makefile, the warning-enabled, command line definition is the one that’s
used. Now, every time YS is expanded, a warning is printed.

Note that this technique doesn’t work for a variable that is target specific.
make allows you to define a variable as specific to a target in the manner
shown in Listing 2-5:

all: FOO=foo
all: a
all: ; @echo $(FOO)

a: ; @echo $(FOO)

Listing 2-5: Defining a target-specific variable

The variable FOO will have the value foo in the rule that builds all and
in any prerequisites of all. The makefile in Listing 2-5 will print foo twice,
because FOO is defined in both the all and a rules. The tracer is unable
to obtain the value of FOO and would in fact cause this makefile to behave
incorrectly.

The tracer works by redefining the variable being traced as described
earlier. Because this happens outside a rule definition, the tracer has no way
of obtaining the value of a variable that is target specific. For example, in
Listing 2-5, FOO is defined only when running the all or a rules. The tracer
has no way of obtaining its value. Using the tracer on that makefile to trace
FOO results in the wrong behavior:

$ make TRACE=FOO
Makefile:10: TRACE FOO
Makefile:8: TRACE FOO

That should have output foo twice (once for the all rule and once for a),
but the tracer has redefined FOO and messed up its value. Don’t use this
tracer for target-specific variables.

Makefile Debugging 51

The $(warning) function sends its output to STDERR, which makes it pos-
sible to separate normal make output from the tracer. Simply redirect STDERR
to a trace log file. Here’s an example:

$ make TRACE=S 2> trace.log
dog dog
cat cat
dogs hate cats

This command will write normal make output to the command line
while redirecting the trace output to trace.log.

Tracing Rule Execution
Until GNU make 4.0, there was no built-in way to trace the order of execu-
tion of makefile targets. GNU make 4.0 added the --trace option, which I
cover in “GNU make 4.0 Tracing” on page 54, but if you need to use an
earlier version of make, it’s handy to have another way to trace a makefile.
The techniques shown here work with GNU make 4.0 and earlier.

N o t e 	 If you’ve ever stared at a cryptic log output and asked yourself, “What rule caused
that output?” or “Where’s the output for the foo rule?” then this section is for you.
And to be honest, who hasn’t wondered what GNU make’s log file output means?

An Example
This section uses the following example makefile:

.PHONY: all
all: foo.o bar

bar: ; @touch $@

It builds two files: foo.o and bar. We’ll assume that foo.c exists so that
make’s built-in rules create foo.o; whereas bar is a simple rule that just touches
$@. If you run make for the first time with this makefile, you’d see the follow-
ing output:

$ make
cc -c -o foo.o foo.c

This log output is rather cryptic. There’s no sign of the rule for bar
being run (because touch $@ was hidden using the @ modifier, which pre-
vents the command from being printed). And there’s no indication that it
was the rule for foo.o that generated the cc compilation line. Nor is there
any indication that the all rule was used.

52 Chapter 2

You could, of course, use make -n (which just prints the commands to
be run without actually executing them) to look at the work that GNU make
would perform:

$ make -n
cc -c -o foo.o foo.c
touch bar

In this case it’s practical, but in general make -n’s output can be just as
cryptic as a normal log file, and it doesn’t provide any way of matching lines
in the log with lines in the makefile.

The SHELL Hack
One simple way to enhance the output of GNU make is to redefine SHELL,
which is a built-in variable that contains the name of the shell to use when
make executes commands. Most shells have an -x option that causes them to
print each command they are about to execute; therefore, if you modify
SHELL in a makefile by appending -x, it will cause every command to be
printed as the makefile is run.

Here’s the example makefile modified using GNU make’s += operator to
append -x to SHELL:

SHELL += -x

.PHONY: all
all: foo.o bar

bar: ; @touch $@

In some shells this may not work (the shell may expect a single word of
options). In GNU make 4.0 and later, a variable called .SHELLFLAGS contains
the flags for the shell and can be set to avoid this problem instead of alter-
ing SHELL.

Now the makefile output reveals that touch bar was generated by the
rule for bar:

$ make
cc -c -o foo.o foo.c
+ cc -c -o foo.o foo.c
+ touch bar

The SHELL technique has one disadvantage: it slows make down. If SHELL is
left untouched, make will often avoid using the shell altogether if it knows it
can execute the command directly—for simple operations like compilation
and linking, for example. But once SHELL is redefined in a makefile, make will
always use the shell, thus slowing it down.

Of course, that doesn’t make this a bad debugging trick: getting addi-
tional information for a brief slowdown is a very small price to pay. But

Makefile Debugging 53

redefining SHELL doesn’t help track the relationship between the lines in
a log file and the makefile. Fortunately, this is possible to do with an even
smarter redefinition of SHELL.

An Even Smarter SHELL Hack
If SHELL has been redefined, make will expand its value before it runs each
line of each rule. This means that if the expansion of SHELL were to output
information, it would be possible to print information before each rule runs.

As you saw in “Tracing Variable Values” on page 47, the $(warning)
function helpfully outputs a string of your choosing, along with the name
of the makefile and the line number at which the $(warning) was written. By
adding a $(warning) call to SHELL, it’s possible to print detailed information
every time SHELL gets expanded. The following code snippet does just this:

OLD_SHELL := $(SHELL)
SHELL = $(warning Building $@)$(OLD_SHELL)

.PHONY: all
all: foo.o bar

bar: ; @touch $@

The first line captures the normal value of SHELL in a variable called
OLD_SHELL. Notice the use of := to get SHELL’s final value, not its definition.
The second line defines SHELL to include the old shell value and a $(warning)
that will print the name of the target being built.

Running GNU make now produces very useful information:

$ make
make: Building foo.o
cc -c -o foo.o foo.c
Makefile:7: Building bar

The first line of output is produced when the built-in pattern rule to
build foo.o is about to be executed. Because no makefile or line number
information gets printed, we know that a built-in rule was used here. Then
you see the actual output of the built-in rule (the cc command). This is
followed by another piece of output from the $(warning), stating that bar is
about to be built using the rule in the makefile at line 7.

We used $@ in the $(warning) statement that we added to SHELL, but there’s
nothing stopping us from using other automatic variables. For example, in
Listing 2-6, we use $<, which holds the first prerequisite from which the tar-
get is being built, and $?, which holds the list of prerequisites that are newer
than the target and tells us why the target is being built.

OLD_SHELL := $(SHELL)
SHELL = $(warning Building $@$(if $<, (from $<))$(if $?, ($? newer)))$(OLD_SHELL)

.PHONY: all

54 Chapter 2

all: foo.o bar

bar: ; touch $@

Listing 2-6: Using the SHELL hack

Here SHELL has been redefined to output three pieces of information:
the name of the target being built ($@), the name of the first prerequisite
($<, which is wrapped in a $(if) so that nothing is printed if there is no pre-
requisite), and the names of any newer prerequisites ($?).

Deleting foo.o and running make on this makefile now shows that foo.o
was built from foo.c because foo.c was newer than foo.o (because it was
missing):

$ make
make: Building foo.o (from foo.c) (foo.c newer)
cc -c -o foo.o foo.c
Makefile:7: Building bar

There’s nothing to stop us from combining this $(warning) trick with -x
to get output showing which rules ran and what commands were executed,
as shown in Listing 2-7.

OLD_SHELL := $(SHELL)
SHELL = $(warning Building $@$(if $<, (from $<))$(if $?, ($? newer)))$(OLD_SHELL) -x

.PHONY: all
all: foo.o bar

bar: ; @touch $@

Listing 2-7: Combining the $(warning) trick with -x

Here’s the full output of the makefile in Listing 2-7.

$ make
make: Building foo.o (from foo.c) (foo.c newer)
cc -c -o foo.o foo.c
+ cc -c -o foo.o foo.c
Makefile:7: Building bar
+ touch bar

This assumes that foo.c was newer than foo.o (or foo.o was missing)
when make was run.

GNU make 4.0 Tracing
GNU make 4.0 added a --trace command line option that you can use to
trace rule execution. It provides output similar to that of Listing 2-7. Here’s

Makefile Debugging 55

what happens when Listing 2-6, minus the SHELL modifications, is traced
using GNU make 4.0:

$ make --trace
<builtin>: update target 'foo.o' due to: foo.c
cc -c -o foo.o foo.c
Makefile:4: target 'bar' does not exist
touch bar

When called with the --trace option, GNU make 4.0 overrides the @ mod-
ifier (used in the earlier example to suppress touch bar) in the same way
that the -n and --just-print flags do.

Makefile Assertions
Most programming languages have assertions: statements that do nothing
if the value they assert is true but cause a fatal error if not. They’re com-
monly used as a runtime debugging aid to catch very odd situations. A
typical assert in C might look like assert(foo != bar) and would result in a
fatal error if foo and bar are the same.

Unfortunately, GNU make does not have any form of built-in assertions.
But they are easy to create from existing functions, and there are even con-
venient assertion functions defined in the GNU Make Standard Library
(GMSL).

The GMSL project (which is covered in Chapter 6) provides two asser-
tion functions: assert and assert_exists.

assert
The assert function will output a fatal error if its first argument is false. As
with make’s $(if) function, GMSL treats any non-empty string as true and
an empty string as false. Thus, if assert’s argument is an empty string, the
assertion will cause a fatal error; the second argument to assert will be
printed as part of the error. For example, this makefile breaks immediately
because $(FOO) and $(BAR) are the same:

include gmsl

FOO := foo
BAR := foo

$(call assert,$(call sne,$(FOO),$(BAR)),FOO and BAR should not be equal)

Because assert is not a built-in function—it’s user defined in the GMSL
makefile—we must use $(call).

We get the message:

Makefile:5: *** GNU Make Standard Library: Assertion failure: FOO and BAR should
not be equal. Stop.

56 Chapter 2

The assertion uses another GMSL function, sne, which compares two
strings and returns true if they are not equal or false otherwise.

Because true simply means not an empty string, it’s easy to assert that a
variable be defined:

include gmsl

$(call assert,$(FOO),FOO is not defined)

You can use this assertion, for example, to check that a user has set all
necessary command line variables; if FOO is required for the makefile to run
properly but the user forgot to set it on the command line, the assertion will
cause an error.

You can even use assertions to enforce that certain command line flags
are not used. Here’s an example that prevents the user from setting -i, the
ignore errors flag:

include gmsl

$(foreach o,$(MAKEFLAGS),$(call assert,$(call sne,-i,$o),You can't use the -i option))

ifneq ($(patsubst -%,-,$(firstword $(MAKEFLAGS))),-)
$(call assert,$(call sne,$(patsubst i%,i,$(patsubst %i,i,$(firstword \
$(MAKEFLAGS)))),i),You can't use the -i option)
endif

This example is more complex than the previous two because make can
store the -i flag in MAKEFLAGS in two ways: as a flag in the familiar form -i or
as a block of single characters in the first word of MAKEFLAGS. That is, setting
the command line flags -i -k results in MAKEFLAGS having the value ki. So the
first assert in the loop looks for -i, and the second assert searches for i in
the first word of MAKEFLAGS.

assert_exists
Because the success of a build relies on having all necessary files present,
the GMSL provides an assertion specifically designed to warn if a file is
missing. The assert_exists function has a single argument: the name of the
file that must exist. For example, to check that the file foo.txt exists before
any commands are run by the makefile, you can add an assertion at the start:

include gmsl

$(call assert_exists,foo.txt)

If the file does not exist, the build stops:

Makefile:3: *** GNU Make Standard Library: Assertion failure: file 'foo.txt'
missing. Stop.

Makefile Debugging 57

The assertion stopped the build and the line on which the assertion is
found in the makefile—in this case, 3—is shown.

assert_target_directory
A common problem in building real-world makefiles is that you must con-
struct directory hierarchies during or before the build. You can ensure
that every directory exists before each rule runs by creating a special
assert_target_directory variable, as shown in Listing 2-8.

include gmsl

assert_target_directory = $(call assert,$(wildcard $(dir $@)),Target directory $(dir $@) missing)

foo/all: ; @$(call assert_target_directory)echo $@

Listing 2-8: Creating an assert_target_directory variable

By inserting $(call assert_target_directory) at the start of each rule or
pattern rule’s recipe, make automatically checks that the directory in which
the target is to be written exists. For example, if foo/ does not exist, the
makefile in Listing 2-8 results in the following error:

Makefile:6: *** GNU Make Standard Library: Assertion failure: Target directory
foo/ missing. Stop.

The error gives the name of the makefile and the line number at which
the problem occurred, making it trivial to find the problem.

For a final trick, it’s possible to use a two-line modification to cause
the makefile to check every rule for a missing directory. Instead of adding
$(call assert_target_directory) to every rule, just redefine the SHELL variable
to include $(call assert_target_directory). This does slow performance but
can be useful in tracking down a missing directory somewhere deep in
nested makefiles:

include gmsl

assert_target_directory = $(call assert,$(wildcard $(dir $@)),Target directory $(dir $@) missing)

OLD_SHELL := $(SHELL)
SHELL = $(call assert_target_directory)$(OLD_SHELL)

foo/all: ; @echo $@

make expands the value of SHELL and hence performs a call to
assert_target_directory for every rule that is run. This simple change
means that every rule checks that the target directory exists.

58 Chapter 2

The new value of SHELL consists of a call to assert_target_directory, which
always returns an empty string, followed by the old value of SHELL, which
had been stored in OLD_SHELL. Note how OLD_SHELL is defined using := so that
SHELL doesn’t refer to itself—OLD_SHELL contains the value of SHELL at runtime
and can be safely used to redefine SHELL. If OLD_SHELL were defined using =,
make would fail to run because of a circular reference: SHELL would refer to
OLD_SHELL, which in turn would refer to SHELL, and so on.

The assert_target_directory function works by calling the built-in
$(wildcard) function with the name of the directory where the current target
being built should be written. The $(wildcard) function simply checks to
see whether the directory exists and returns the name of the directory if so
or the empty string if the directory is missing. The target is defined by the
automatic variable $@, and the directory portion is extracted with $(dir).

An Interactive GNU make Debugger
Despite GNU make’s popularity, debugging facilities are few and far between.
GNU make has a -d option that outputs extensive (but not necessarily use-
ful) debugging information about a build, and a -p option that prints GNU
make’s internal database of rules and variables. This section shows how to
build an interactive debugger for GNU make using only GNU make’s internal
functions and the shell read command.

The debugger has breakpoints, dumps information about the rule at
which a breakpoint is hit, and allows interactive querying of variable values
and definitions.

The Debugger in Action
Before you see how the debugger works, let’s look at how to use it. The
debugger and these examples all assume that you are using GNU make 3.80
or later. Listing 2-9 shows an example makefile that builds all from the pre-
requisites foo and bar.

MYVAR1 = hello
MYVAR2 = $(MYVAR1) everyone
all: MYVAR3 = $(MYVAR2)
all: foo bar
 $(__BREAKPOINT)
 @echo Finally making $@
foo bar:
 @echo Building $@

Listing 2-9: Setting a breakpoint using the __BREAKPOINT variable

To illustrate the use of the debugger, a breakpoint is set in the all rule
by inserting a line at the start of the rule’s recipe that consists of just the
variable __BREAKPOINT. $(__BREAKPOINT) gets expanded when the rule runs,
causing the debugger to break execution and prompt when the all rule is
about to run, as shown in Listing 2-9.

Makefile Debugging 59

Here’s what happens when this makefile is executed with no existing
files called all, foo, or bar:

$ make
Building foo
Building bar
Makefile:51: GNU Make Debugger Break
Makefile:51: - Building 'all' from 'foo bar'
Makefile:51: - First prerequisite is 'foo'
Makefile:51: - Prerequisites 'foo bar' are newer than 'all'
1>

First, you see the output from the execution of the rules for foo and bar
(the Building foo and Building bar lines), and then there’s a break into the
debugger. The debugger break shows the line at which the break occurred
and in which makefile. In this case, the breakpoint occurred at line 51 of
the makefile. (It’s line 51 because what’s not shown in Listing 2-9 is all the
actual GNU make variables that make the debugger work.)

The debugger also outputs information about the rule being built.
Here you can see that all is built from foo and bar and that the first prereq-
uisite is foo. That’s important because it’s the first prerequisite that is stored
in GNU make’s $< automatic variable. ($< is typically used as the source code
filename for compilation.) The debugger also shows why the all rule ran:
foo and bar are both newer than all (because they were both just built by
their respective rules).

Finally, the debugger prompts 1> for a command. The debugger will
accept 32 commands before automatically continuing execution of the
makefile. The number 1 indicates that this is the first command; once 32> is
reached, the debugger will continue automatically. The first thing to do is
ask for help by typing h:

1> h
Makefile:51: c continue
Makefile:51: q quit
Makefile:51: v VAR print value of $(VAR)
Makefile:51: o VAR print origin of $(VAR)
Makefile:51: d VAR print definition of $(VAR)
2>

The debugger provides two means of stopping debugging: typing c
continues with normal execution of the makefile; typing q quits make. The
three debugger commands v, o, and d allow the user to interrogate GNU
make variables by asking for the value of a variable, its origin (where it was
defined), or its definition. For example, the makefile in Listing 2-9 con-
tains two variables—MYVAR1 and MYVAR2—and a variable that is specific to the
all rule: MYVAR3. A first step is to ask the debugger for the values of each of
these variables:

2> v MYVAR1
Makefile:55: MYVAR1 has value 'hello'

60 Chapter 2

3> v MYVAR2
Makefile:55: MYVAR2 has value 'hello everyone'
4> v MYVAR3
Makefile:55: MYVAR3 has value 'hello everyone'
5>

If it wasn’t clear how MYVAR3 got its value, you could ask the debugger for
its definition:

5> d MYVAR3
Makefile:55: MYVAR3 is defined as '$(MYVAR2)'
6>

This shows that MYVAR3 is defined as $(MYVAR2). And so the obvious next
step is to find out how MYVAR2 is defined (and also MYVAR1):

6> d MYVAR2
Makefile:55: MYVAR2 is defined as '$(MYVAR1) everyone'
7> d MYVAR1
Makefile:55: MYVAR1 is defined as 'hello'
8>

And if it wasn’t clear where MYVAR1 got its value, the o command will
show its origin:

8> o MYVAR1
Makefile:55: MYVAR1 came from file
9>

This means that MYVAR1 is defined in a makefile. In contrast:

$ make MYVAR1=Hello
1> v MYVAR1
Makefile:55: MYVAR1 has value 'Hello'
2> o MYVAR1
Makefile:55: MYVAR1 came from command line
3>

If the user has overridden the value of MYVAR1 on the command line (by
running, say, make MYVAR1=Hello), the o command reflects that.

Breakpoints in Patterns
As well as setting breakpoints in normal rules, you can also set them in pat-
terns. Every time that pattern rule is used, the breakpoint is hit. For example:

all: foo.x bar.x

%.x: FOO = foo
%.x: %.y

Makefile Debugging 61

 $(__BREAKPOINT)
 @echo Building $@ from $<...

foo.y:
bar.y:

Here, all is built from foo.x and bar.x, which requires building them
from foo.y and bar.y using the %.x: %.y rule. A breakpoint is inserted in
the pattern rule, and the debugger breaks twice: once for foo.x and once
for bar.x:

$ make
Makefile:66: GNU Make Debugger Break
Makefile:66: - Building 'foo.x' from 'foo.y'
Makefile:66: - First prerequisite is 'foo.y'
Makefile:66: - Prerequisites 'foo.y' are newer than 'foo.x'
1> c
Building foo.x from foo.y...
Makefile:66: GNU Make Debugger Break
Makefile:66: - Building 'bar.x' from 'bar.y'
Makefile:66: - First prerequisite is 'bar.y'
Makefile:66: - Prerequisites 'bar.y' are newer than 'bar.x'
1> c
Building bar.x from bar.y...

Even pattern-specific variables work:

$ make
Makefile:67: GNU Make Debugger Break
Makefile:67: - Building 'foo.x' from 'foo.y'
Makefile:67: - First prerequisite is 'foo.y'
Makefile:67: - Prerequisites 'foo.y' are newer than 'foo.x'
1> v FOO
Makefile:67: FOO has value 'foo'
2>

%.x has a pattern-specific variable FOO with the value foo; the debugger
v command can access it during a breakpoint on the pattern rule.

Breakpoints in Makefiles
Additionally, you can simply insert a breakpoint in a makefile if needed.
Parsing of makefiles will pause at the breakpoint so you can examine the
current state of variables in the makefile. For example, with a breakpoint
after each definition of FOO in this makefile, you can see its value change:

FOO = foo
$(__BREAKPOINT)
FOO = bar
$(__BREAKPOINT)

62 Chapter 2

Here’s a sample run:

$ make
Makefile:76: GNU Make Debugger Break
1> v FOO
Makefile:76: FOO has value 'foo'
2> c
Makefile:78: GNU Make Debugger Break
1> v FOO
Makefile:78: FOO has value 'bar'
2>

The two separate breakpoints are activated (one after each time FOO is
set). Using the debugger’s v command shows how the value of FOO changes
at each breakpoint.

Debugger Internals
The debugger draws on functions defined in the GMSL (you can read more
about the GMSL in Chapter 6). The first line of the debugger includes the
GMSL functions:

include gmsl

__LOOP := 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32

The debugger uses the __PROMPT variable to output the n> and read in a
command followed by a single argument. __PROMPT uses the read shell com-
mand to get the command and argument into shell variables $CMD and $ARG
and then returns a list of two elements: the first element is the command and
the second is the argument. Expanding __PROMPT prompts for and returns a
single command and argument pair:

__PROMPT = $(shell read -p "$(__HISTORY)> " CMD ARG ; echo $$CMD $$ARG)

You use the __BREAK variable to get and handle a single command. First,
it stores the result of __PROMPT in __INPUT, and then it calls the __DEBUG func-
tion (which handles debugger commands) with two arguments: the com-
mand and its argument returned by __PROMPT in __INPUT.

__BREAK = $(eval __INPUT := $(__PROMPT)) \
 $(call __DEBUG, \
 $(word 1,$(__INPUT)), \
 $(word 2,$(__INPUT)))

The __DEBUG function handles the core of the debugger. __DEBUG takes a
single character command in $1, its first argument, and an optional argu-
ment to the command in $2. $1 is stored in the variable __c and $2 in __a.

Makefile Debugging 63

Then __DEBUG examines __c to see whether it is one of the supported debug-
ger commands (c, q, v, d, o, or h); if not, a call to $(warning) will output an
error message.

__DEBUG consists of a set of nested $(if) statements that use the GMSL seq
function to determine if the __c is a valid debugger command. If it is, $(if)’s
first argument is expanded; if not, the next $(if) is examined. For example,
the v command (which outputs the value of a variable) is handled like this:

$(if $(call seq,$(__c),v),$(warning $(__a) has value '$($(__a))'), ... next if ...)

If the __c command is v, then $(warning) is used to output the value of
the variable named by __a (the $($(__a)) outputs the value of the variable
whose name is stored in __a).

When __DEBUG is done, it returns either $(true) or $(false) (the empty
string). $(true) indicates that the debugger should stop prompting for com-
mands and continue execution (the q command is handled by calling GNU
make’s $(error) function to cause a fatal error, which stops make):

__DEBUG = $(eval __c = $(strip $1)) \
 $(eval __a = $(strip $2)) \
 $(if $(call seq,$(__c),c), \
 $(true), \
 $(if $(call seq,$(__c),q), \
 $(error Debugger terminated build), \
 $(if $(call seq,$(__c),v), \
 $(warning $(__a) has value '$($(__a))'), \
 $(if $(call seq,$(__c),d), \
 $(warning $(__a) is defined as '$(value $(__a))'), \
 $(if $(call seq,$(__c),o), \
 $(warning $(__a) came from $(origin $(__a))), \
 $(if $(call seq,$(__c),h), \
 $(warning c continue) \
 $(warning q quit) \
 $(warning v VAR print value of $$(VAR)) \
 $(warning o VAR print origin of $$(VAR)) \
 $(warning d VAR print definition of $$(VAR)), \
 $(warning Unknown command '$(__c)')))))))

Finally, we come to the definition of __BREAKPOINT (the breakpoint vari-
able we used in Listing 2-9). It first outputs a banner containing informa-
tion (you’ll see what __BANNER does in a moment); then it loops asking for
commands by calling __BREAK. The loop terminates either if it runs out of
items in __LOOP (which is where the 32-command limit is defined) or if a call
to __BREAK returns $(true):

__BREAKPOINT = $(__BANNER) \
 $(eval __TERMINATE := $(false)) \
 $(foreach __HISTORY, \
 $(__LOOP), \
 $(if $(__TERMINATE),, \
 $(eval __TERMINATE := $(__BREAK))))

64 Chapter 2

__BANNER shows that the debugger has stopped at a breakpoint, and by
examining GNU make automatic variables, it is able to give information
about the current rule being built:

__BANNER = $(warning GNU Make Debugger Break) \
 $(if $^, \
 $(warning - Building '$@' from '$^'), \
 $(warning - Building '$@')) \
 $(if $<,$(warning - First prerequisite is '$<')) \
 $(if $%,$(warning - Archive target is '$%')) \
 $(if $?,$(warning - Prerequisites '$?' are newer than '$@'))

Here’s the complete debugger code:

__LOOP := 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32

__PROMPT = $(shell read -p "$(__HISTORY)> " CMD ARG ; echo $$CMD $$ARG)

__DEBUG = $(eval __c = $(strip $1)) \
 $(eval __a = $(strip $2)) \
 $(if $(call seq,$(__c),c), \
 $(true), \
 $(if $(call seq,$(__c),q), \
 $(error Debugger terminated build), \
 $(if $(call seq,$(__c),v), \
 $(warning $(__a) has value '$($(__a))'), \
 $(if $(call seq,$(__c),d), \
 $(warning $(__a) is defined as '$(value $(__a))'), \
 $(if $(call seq,$(__c),o), \
 $(warning $(__a) came from $(origin $(__a))), \
 $(if $(call seq,$(__c),h), \
 $(warning c continue) \
 $(warning q quit) \
 $(warning v VAR print value of $$(VAR)) \
 $(warning o VAR print origin of $$(VAR)) \
 $(warning d VAR print definition of $$(VAR)), \
 $(warning Unknown command '$(__c)')))))))

__BREAK = $(eval __INPUT := $(__PROMPT)) \
 $(call __DEBUG, \
 $(word 1,$(__INPUT)), \
 $(word 2,$(__INPUT)))

__BANNER = $(warning GNU Make Debugger Break) \
 $(if $^, \
 $(warning - Building '$@' from '$^'), \
 $(warning - Building '$@')) \
 $(if $<,$(warning - First prerequisite is '$<')) \
 $(if $%,$(warning - Archive target is '$%')) \
 $(if $?,$(warning - Prerequisites '$?' are newer than '$@'))
__BREAKPOINT = $(__BANNER) \
 $(eval __TERMINATE := $(false)) \
 $(foreach __HISTORY, \

Makefile Debugging 65

 $(__LOOP), \
 $(if $(__TERMINATE),, \
 $(eval __TERMINATE := $(__BREAK))))

For the most up-to-date version, visit the GNU make Debugger open
source project at http://gmd.sf.net/.

Dynamic Breakpoints in the GNU make Debugger
The preceding section showed how to build a debugger for GNU make
entirely in GNU make. But it had only static (hardcoded) breakpoints. This
section shows you how to enhance the debugger by adding dynamic break-
points. That makes it possible to set and remove breakpoints on the name
of a file (in GNU make language, a target) that the makefile will build.

It’s no longer necessary to insert the $(__BREAKPOINT) string in a makefile.
Typing a simple set breakpoint command has the same effect. And another
keystroke lists all breakpoints currently in effect.

This section shows the use of the new breakpoints and how they are
coded. The new code is written entirely in GNU make’s variable language
and uses the GMSL set functions (detailed in Chapter 6) to maintain the
list of current breakpoints.

Getting the breakpoints to activate requires a little GNU make magic,
but first let’s look at an example.

Dynamic Breakpoints in Action
Before you see how the debugger works, let’s look at how to use it. The
debugger and these examples all assume that you are using GNU make 3.80
or later.

Here’s an example makefile that builds all from prerequisites foo and bar.

include gmd

MYVAR1 = hello
MYVAR2 = $(MYVAR1) everyone

all: MYVAR3 = $(MYVAR2)
all: foo bar
all: ; @echo Finally making $@
foo bar: ; @echo Building $@

$(__BREAKPOINT)

To illustrate the use of the debugger, a breakpoint is set in the makefile
by inserting a line at the end of the makefile that consists of just the vari-
able $(__BREAKPOINT). $(__BREAKPOINT) will get expanded when the makefile
finishes being parsed, causing the debugger to break execution before any
rules are run and prompt for input. (The debugger is included here with
the include gmd command at the start. You can get the GMD files from the
GMD website at http://gmd.sf.net/; it’s all open source code.)

66 Chapter 2

Here’s what happens when this makefile is executed with no existing
files called all, foo, or bar.

$ make
Makefile:11: GNU Make Debugger Break
1> h
Makefile:11: c: continue
Makefile:11: q: quit
Makefile:11: v VAR: print value of $(VAR)
Makefile:11: o VAR: print origin of $(VAR)
Makefile:11: d VAR: print definition of $(VAR)
Makefile:11: b TAR: set a breakpoint on target TAR
Makefile:11: r TAR: unset breakpoint on target TAR
Makefile:11: l: list all target breakpoints
2>

The debugger immediately breaks and waits for input. The first thing
to do is type h to see the help text and the three new commands: b (to set a
breakpoint), r (to remove a breakpoint), and l (to list current breakpoints).

Then set two breakpoints in the makefile: one when foo gets built and
one for all. (If you look back at “The Debugger in Action” on page 58,
you’ll see that you can also achieve this by modifying the makefile, but
these new breakpoints can be set dynamically at runtime.)

After setting the breakpoints, use the l command to verify that they
are set:

2> b foo
Makefile:11: Breakpoint set on `foo'
3> b all
Makefile:11: Breakpoint set on `all'
4> l
Makefile:11: Current target breakpoints: `all' `foo'
5>

Continuing execution by entering c causes the foo breakpoint to be hit
immediately. foo is the first target that the makefile will build (followed by
bar and finally all). The breakpoint indicates that the rule for foo is at line 9:

5> c
Makefile:9: GNU Make Debugger Break
Makefile:9: - Building 'foo'
1>

Continuing on, first the output (generated when bar is created) appears,
and then the all breakpoint is hit.

1> c
Building foo
Building bar
Makefile:7: GNU Make Debugger Break
Makefile:7: - Building 'all' from 'foo bar'
Makefile:7: - First prerequisite is 'foo'

Makefile Debugging 67

Makefile:7: - Prerequisites 'foo bar' are newer than 'all'
1>

The all breakpoint prints out much more information than foo because
all has prerequisites.

The Easy Part
To add the breakpoint functions to the GNU make debugger, the debugger
code that handles the keyboard was first altered to recognize the b, r, and l
commands and call user-defined GNU make functions __BP_SET, __BP_UNSET,
and __BP_LIST.

The targets for which breakpoints are defined are simply a GMSL set
of target names. Initially, there are no breakpoints and so the set, called
__BREAKPOINTS, is empty:

__BREAKPOINTS := $(empty_set)

Setting and removing breakpoints is a matter of calling the GMSL
functions set_insert and set_remove to add or remove an element from
__BREAKPOINTS:

__BP_SET = $(eval __BREAKPOINTS := $(call set_insert,$1,$(__BREAKPOINTS))) \
 $(warning Breakpoint set on `$1')

__BP_UNSET = $(if $(call set_is_member,$1,$(__BREAKPOINTS)), \
 $(eval __BREAKPOINTS := $(call set_remove,$1,$(__BREAKPOINTS))) \
 $(warning Breakpoint on `$1' removed), \
 $(warning Breakpoint on `$1' not found))

Both functions use the GNU make $(eval) function to change the value of
__BREAKPOINTS. $(eval FOO) evaluates its argument FOO as if it were a piece of text
during parsing of the makefile: this means that at runtime you can change
variable values or define new rules.

__BP_UNSET used the GMSL function set_is_member to determine whether
the breakpoint being removed was actually defined and output a helpful
message in the case that the user tries to remove a nonexistent breakpoint
(which may be caused by a typing error on their part).

Listing the current breakpoints is simply a matter of outputting the con-
tents of the set stored in __BREAKPOINTS. Because that set is just a list with no
duplicates, __BP_LIST feeds its value into the GNU make functions $(addprefix)
and $(addsuffix) to put quotation marks around the target names:

__BP_LIST = $(if $(__BREAKPOINTS), \
 $(warning Current target breakpoints: \
 $(addsuffix ',$(addprefix `,$(__BREAKPOINTS)))), \
 $(warning No target breakpoints set))

__BP_LIST uses the GNU make $(if) function to choose between list-
ing the breakpoints if there are any or saying No target breakpoints set if

68 Chapter 2

the __BREAKPOINTS set is empty. $(if) will evaluate its second argument if
$(__BREAKPOINTS) is a non-empty string and evaluate its third argument if
there are no breakpoints.

The Trick
To get GNU make to break into the debugger, it has to expand the __BREAKPOINT
variable, which outputs information about the breakpoint and prompts for
commands. But for that to happen, we need a way to check which break-
points are defined every time a rule is about to run. If we can engineer that,
then make can expand $(__BREAKPOINT) if necessary, causing make to stop at the
breakpoint.

Fortunately, it’s possible to cause make to expand __BREAKPOINT by modify-
ing the built-in SHELL variable.

The SHELL variable is also expanded every time a command is about
to run inside a rule. That makes it ideal for checking breakpoints. Here’s
the actual code in the GNU make debugger that uses SHELL for breakpoint
handling:

__BP_OLD_SHELL := $(SHELL)
__BP_NEW_SHELL = $(if $(call seq,$(__BP_FLAG),$@), \
 $(call $1,), \
 $(__BP_CHECK))$(__BP_OLD_SHELL)
SHELL = $(call __BP_NEW_SHELL,$1)

First, the real value of SHELL is stored in __BP_OLD_SHELL (note that the
GNU make := operator is used to capture the value, not the definition, of
SHELL). Then SHELL is redefined to call the __BP_NEW_SHELL variable.

__BP_NEW_SHELL is where the interesting work is done. The last part of it is
$(__BP_OLD_SHELL), which is the value of the original SHELL variable. After all,
once it’s done checking breakpoints, GNU make needs to use the original
shell to actually run commands. Before that there’s a rather complex $(if).
Concentrate for a moment on the call to $(__BP_CHECK). That’s the variable
that will actually check to see whether the breakpoint should be executed.
It’s defined like this:

__BP_CHECK = $(if $(call set_is_member,$@, \
 $(__BREAKPOINTS)), \
 $(eval __BP_FLAG := $@) \
 $(eval __IGNORE := $(call SHELL, \
 __BREAKPOINT)))

__BP_FLAG :=

__BP_CHECK checks to see whether the current target being built (stored
in the standard GNU make automatic variable $@) is present in the list of
breakpoints. It does this using the GMSL function set_is_member. If the target
is present, it does two things: it sets an internal variable called __BP_FLAG to
be the target for which the breakpoint has activated and then proceeds to
$(call) a variable and throw away the result by storing it in a variable called

Makefile Debugging 69

__IGNORE. That’s done so that __BP_CHECK’s return value will always be empty;
it’s used, after all, in the definition of SHELL, which ultimately needs to be just
the name of the shell to execute.

Experienced GNU make users will be scratching their heads wondering
about the odd syntax $(call SHELL,__BREAKPOINT). That’s where some GNU
make rocket science comes in.

Rocket Science
Instead of writing $(call SHELL,__BREAKPOINT), it’s tempting to write
$(__BREAKPOINT) to get the breakpoint to activate. But that doesn’t work.

Doing so would cause a fatal GNU make error. Follow the chain of
variables up from __BP_CHECK, and it becomes clear that it’s been expanded
because SHELL was being expanded (because a rule was about to run).
Follow into __BREAKPOINT, and there’s a nasty surprise: a call to $(shell)
(this can be seen in the GMD code on page 64 or in the preceding sec-
tion), which will cause SHELL to be expanded.

Danger, Will Robinson! SHELL is defined in terms of SHELL, which causes
GNU make to spot the recursion and give up. The $(call SHELL,__BREAKPOINT)
syntax lets us play with fire. Any time a variable is $(call)ed in GNU make, the
flag used to check for recursion is disabled. So doing $(call SHELL,__BREAKPOINT)
means that the recursion flag on SHELL is turned off (avoiding the error)
and the definition of SHELL calls __BP_NEW_SHELL with one argument. The
argument is the word __BREAKPOINT. __BP_NEW_SHELL checks to see whether
__BP_FLAG is set to the same value as $@ (which it does using the GMSL
seq function) and then proceeds to $(call) its first argument (which is
__BREAKPOINT); the breakpoint fires and the prompt appears.

It might seem that some horrible infinite recursion will occur when
the $(shell) gets executed and SHELL is expanded again. Two things prevent
that: __BP_FLAG is still the same as $@ (so __BP_CHECK is not called again), and
this time SHELL has no argument (the value in $1 is empty), so the $(call $1,)
does nothing and recursion stops.

An Introduction to remake
The remake project (http://bashdb.sourceforge.net/remake/) is a fork of GNU make
that integrates a complete debugger created by modifying the GNU make
source code. remake forked from GNU make 3.82 and is currently at version
3.82+dbg-0.9.

Just Print and Trace
To illustrate the operation of remake, let’s use Listing 2-10, a sample makefile:

.PHONY: all
all: foo bar baz

foo: bar
 @touch $@

70 Chapter 2

bar:
 @touch $@

baz: bam
 @touch $@

bam:
 @touch $@

Listing 2-10: A simple makefile to illustrate remake

Running the standard GNU make -n (or --just-print) option against this
makefile produces the following output:

$ make -n
touch bar
touch foo
touch bam
touch baz

But remake provides a makefile and line number information for each
rule. The information shows the target (the value of $@) and the commands
to be run:

$ remake -n
##>>
Makefile:8: bar
touch bar
##<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<
##>>
Makefile:5: foo
touch foo
##<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<
##>>
Makefile:14: bam
touch bam
##<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<
##>>
Makefile:11: baz
touch baz
##<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<

Of course, you have to run any real makefile to understand its execu-
tion. remake provides a handy tracing option, -x, which runs the makefile
while outputting information about why targets are being built and showing
the commands executed and their output:

$ remake -x
Reading makefiles...
Updating goal targets....
Makefile:2 File `all' does not exist.

Makefile Debugging 71

 Makefile:4 File `foo' does not exist.
 Makefile:7 File `bar' does not exist.
 Makefile:7 Must remake target `bar'.
##>>
Makefile:8: bar
touch bar
##<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<
+ touch bar
 Makefile:7 Successfully remade target file `bar'.
 Makefile:4 Must remake target `foo'.
##>>
Makefile:5: foo
touch foo
##<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<
+ touch foo
 Makefile:4 Successfully remade target file `foo'.
 Makefile:10 File `baz' does not exist.
 Makefile:13 File `bam' does not exist.
 Makefile:13 Must remake target `bam'.
##>>
Makefile:14: bam
touch bam
##<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<
+ touch bam
 Makefile:13 Successfully remade target file `bam'.
 Makefile:10 Must remake target `baz'.
##>>
Makefile:11: baz
touch baz
##<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<
+ touch baz

Makefile:10 Successfully remade target file `baz'.
Makefile:2 Must remake target `all'. Is a phony target.
Makefile:2 Successfully remade target file `all'.

The trace option really comes into its own when an error occurs. Here’s
the output when a nonexistent option -z is added to the touch in the com-
mands for target bar:

$ remake -x
Reading makefiles...
Updating goal targets....
Makefile:2 File `all' does not exist.
 Makefile:4 File `foo' does not exist.
 Makefile:7 File `bar' does not exist.
 Makefile:7 Must remake target `bar'.
##>>
Makefile:8: bar
touch -z bar
##<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<
+ touch -z bar
touch: invalid option -- 'z'
Try `touch --help' for more information.

72 Chapter 2

Makefile:8: *** [bar] Error 1

#0 bar at Makefile:8
#1 foo at Makefile:4
#2 all at Makefile:2
Command-line arguments:
 "-x"

Right at the bottom of that output is the call stack of targets that were
dependent on bar building successfully, plus, of course, the error generated
by touch, the actual command that was executed, and where to find it in the
makefile.

Debugging
Because remake contains an interactive debugger, you can use it to debug the
touch problem. Run remake with the -X option (uppercase X for the debugger;
lowercase x for tracing), and the debugger breaks at the first target to be
built:

$ remake -X
GNU Make 3.82+dbg0.9
Built for x86_64-unknown-linux-gnu
Copyright (C) 2010 Free Software Foundation, Inc.
License GPLv3+: GNU GPL version 3 or later <http://gnu.org/licenses/gpl.html>
This is free software: you are free to change and redistribute it.
There is NO WARRANTY, to the extent permitted by law.
Reading makefiles...
Updating makefiles....
Updating goal targets....
 Makefile:2	 File `all' does not exist.
-> (Makefile:4)
foo: bar
remake<0>

So the first break is at line 2 of the makefile and shows that the first
target is all (and the complete prerequisite list is shown). Entering h gives
complete help information:

remake<0> h
 Command Short Name Aliases
 ---------------------- ---------- ---------
 break [TARGET|LINENUM] [all|run|prereq|end]* (b) L
 cd DIR (C)
 comment TEXT (#)
 continue [TARGET [all|run|prereq|end]*] (c)
 delete breakpoint numbers.. (d)
 down [AMOUNT] (D)
 edit (e)
 eval STRING (E)
 expand STRING (x)
 finish [AMOUNT] (F)

Makefile Debugging 73

 frame N (f)
 help [COMMAND] (h) ?, ??
 info [SUBCOMMAND] (i)
 list [TARGET|LINE-NUMBER] (l)
 next [AMOUNT] (n)
 print {VARIABLE [attrs...]} (p)
 pwd (P)
 quit [exit-status] (q) exit, return
 run [ARGS] (R) restart
 set OPTION {on|off|toggle}
 set variable VARIABLE VALUE (=)
 setq VARIABLE VALUE (")
 shell STRING (!) !!
 show [SUBCOMMAND] (S)
 source FILENAME (<)
 skip (k)
 step [AMOUNT] (s)
 target [TARGET-NAME] [info1 [info2...]] (t)
 up [AMOUNT] (u)
 where (T) backtrace, bt
 write [TARGET [FILENAME]] (w)

Because the touch problem occurs later in the make execution (in the bar
rule), just continue by single stepping with s:

remake<1> s
 Makefile:4	 File `foo' does not exist.
-> (Makefile:7)
bar:
remake<2> s
 Makefile:7	File `bar' does not exist.
 Makefile:7	Must remake target `bar'.
Invoking recipe from Makefile:8 to update target `bar'.
##>>
touch -z bar
##<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<
++ (Makefile:7)
bar
remake<3> s
touch: invalid option -- 'z'
Try 'touch --help' for more information.
Makefile:7: *** [bar] Error 1

#0 bar at Makefile:7
#1 foo at Makefile:4
#2 all at Makefile:2

***Entering debugger because we encountered a fatal error.
** Exiting the debugger will exit make with exit code 1.
!! (Makefile:7)
bar
remake<4>

74 Chapter 2

While in the debugger, you can fix the error in the makefile and then
enter R to restart the build:

remake<4> R
Changing directory to /home/jgc and restarting...
GNU Make 3.82+dbg0.9
Built for x86_64-unknown-linux-gnu
Copyright (C) 2010 Free Software Foundation, Inc.
License GPLv3+: GNU GPL version 3 or later <http://gnu.org/licenses/gpl.html>
This is free software: you are free to change and redistribute it.
There is NO WARRANTY, to the extent permitted by law.
Reading makefiles...
Updating makefiles....
Updating goal targets....
 Makefile:2	 File `all' does not exist.
-> (Makefile:4)
foo: bar
remake<0> c

Now things work correctly.

Targets, Macro Values, and Expansion
When stopped in the debugger, it’s possible to interrogate information about
targets in the makefile, such as variable values (expanded and unexpanded)
and commands. For example, in Listing 2-10, when stopped at a breakpoint,
you can find all the information remake has about the all target by using the
target command:

$ remake -X
GNU Make 3.82+dbg0.9
Built for x86_64-unknown-linux-gnu
Copyright (C) 2010 Free Software Foundation, Inc.
License GPLv3+: GNU GPL version 3 or later <http://gnu.org/licenses/gpl.html>
This is free software: you are free to change and redistribute it.
There is NO WARRANTY, to the extent permitted by law.
Reading makefiles...
Updating makefiles....
Updating goal targets....
 /home/jgc/src/thirdparty/remake-3.82+dbg0.9/Makefile:2	 File `all' does not exist.
-> (/home/jgc/src/thirdparty/remake-3.82+dbg0.9/Makefile:4)
foo: bar
remake<0> target all
all: foo bar baz
Phony target (prerequisite of .PHONY).
Implicit rule search has not been done.
Implicit/static pattern stem: `'
File does not exist.
File has not been updated.
Commands not yet started.

Makefile Debugging 75

automatic
@ := all
automatic
% :=
automatic
* :=
automatic
+ := foo bar baz
automatic
| :=
automatic
< := all
automatic
^ := foo bar baz
automatic
? :=
remake<1>

remake shows that all is a phony target and dumps information about
the automatic variables that will be set for this rule. There’s no restriction
on asking about the current target:

remake<1> target foo
foo: bar
Implicit rule search has not been done.
Implicit/static pattern stem: `'
File does not exist.
File has not been updated.
Commands not yet started.
automatic
@ := foo
automatic
% :=
automatic
* :=
automatic
+ := bar
automatic
| :=
automatic
< := bar
automatic
^ := bar
automatic
? :=
commands to execute (from `Makefile', line 5):
 @touch $@

remake<2>

76 Chapter 2

Because target foo has commands, they are listed at the bottom (along
with where to find them in which makefile). To see the expanded form of
the commands, use the expand modifier of the target command:

remake<2> target foo expand
foo:
commands to execute (from `Makefile', line 5):
 @touch foo

remake<3>

To get information about a variable, we use the handy print and expand
commands: print gives the definition of a variable, and expand gives its
post-expansion value. Here’s how to find out the definition of the built-in
COMPILE.c variable (which contains the command used to compile .c files):

remake<4> print COMPILE.c
(origin default) COMPILE.c = $(CC) $(CFLAGS) $(CPPFLAGS) $(TARGET_ARCH) -c

To see the expanded value, expand it:

remake<7> expand COMPILE.c
(origin default) COMPILE.c := cc -c

remake can also set variable values using set (which expands a string and
sets the variable to that value) and setq (which sets the variable to a string
without expansion). For example, changing CC from cc to gcc changes the
C compiler make will use:

remake<7> expand COMPILE.c
(origin default) COMPILE.c := cc -c
remake<8> print CC
(origin default) CC = cc
remake<9> setq CC gcc
Variable CC now has value 'gcc'
remake<10> print CC
(origin debugger) CC = gcc
remake<11> expand COMPILE.c
(origin default) COMPILE.c := gcc -c
remake<12>

remake is a very useful tool to add to your make toolkit. You don’t need to
use it every day, but switching from make to remake when you have a knotty
problem to solve is hassle-free if you are not using any features added in
GNU make 4.0.

3
B u i l d i n g a n d R e b u i l d i n g

Knowing when and why targets are rebuilt
and recipes run is fundamental to using

GNU make. For simple makefiles, it’s easy
to understand why a particular object file

was built, but for real-world makefiles, building and
rebuilding becomes complex. In addition, GNU make dependencies can be
limiting because files are updated when the modification time of a pre-
requisite is later than the target. And in most cases, only a single target is
updated by a single rule.

This chapter explains advanced techniques for handling dependencies
in GNU make, including rebuilding when the recipe of a target changes,
rebuilding when a checksum of a file changes, how best to implement recur-
sive make, and how to build multiple targets in a single rule.

Rebuilding When CPPFLAGS Changes
This section shows you how to implement an important “missing feature”
of GNU make: the ability to rebuild targets when the commands for those

78 Chapter 3

targets change. GNU make rebuilds a target when it is out of date ; that is, it
rebuilds when some of the prerequisites are newer than the target itself. But
what if the target appears up-to-date when looking at file timestamps, but
the actual commands to build the target have changed?

For example, what happens when a non-debug build is followed by a
debug build (perhaps by running make followed by make DEBUG=1)? Unless
the build has been structured so the names of targets depend on whether the
build is debug or non-debug, nothing happens.

GNU make has no way of detecting that some targets ought to be rebuilt,
because it doesn’t take into account any change to the commands in recipes.
If, for example, DEBUG=1 causes the flags passed to the compiler to change,
the target should be rebuilt.

In this section you’ll learn how to make that happen in a few lines of
GNU make code.

An Example Makefile
The example makefile in Listing 3-1 is used throughout this section to dem-
onstrate the rebuilding when commands change system. To make the operation
of the system very clear, I’ve avoided using built-in GNU make rules, so this
makefile isn’t as simple as it could be:

all: foo.o bar.o

foo.o: foo.c
 $(COMPILE.C) -DDEBUG=$(DEBUG) -o $@ $<

bar.o: bar.c
 $(COMPILE.C) -o $@ $<

Listing 3-1: An example makefile for demonstrating the rebuilding when commands
change system.

The makefile creates two .o files, foo.o and bar.o, by compiling cor-
responding .c files. The compilation is done using the built-in variable
COMPILE.C (which will normally be the name of a suitable compiler for the
system, followed by references to variables like CPPFLAGS and use of $@ and $<
to compile the code into an object file).

A specific reference to $(DEBUG) is turned into a pre-processor variable
called DEBUG using the compiler’s -D option. The contents of foo.c and bar.c
have been omitted because they are irrelevant.

Here’s what happens when make is run with no command line options
(which means that DEBUG is undefined):

$ make
g++ -c -DDEBUG= -o foo.o foo.c
g++ -c -o bar.o bar.c

Building and Rebuilding 79

Now foo.o and bar.o have been created, so typing make again does
nothing:

$ make
make: Nothing to be done for `all'.

Typing make DEBUG=1 also does nothing, even though the object file
foo.o would likely be different if it were rebuilt with DEBUG defined (for
example, it would likely contain extra debugging code controlled by
#ifdefs that use the DEBUG variable in the source code):

$ make DEBUG=1
make: Nothing to be done for `all'.

The signature system in the next section will correct that problem and
require very little work for the makefile maintainer.

Changing Our Example Makefile
To fix the problem in the preceding section, we’ll use a helper makefile
called signature. We’ll look at how signature works in a moment; first let’s
look at how to modify the makefile in Listing 3-1 to use it:

include signature

all: foo.o bar.o

foo.o: foo.c
 $(call do,$$(COMPILE.C) -DDEBUG=$$(DEBUG) -o $$@ $$<)

bar.o: bar.c
 $(call do,$$(COMPILE.C) -o $$@ $$<)

-include foo.o.sig bar.o.sig

Three changes were made to the file: first, include signature was added
at the start so the code that handles the updating of signatures is included.
These signatures will capture the commands used to build files and be used
to rebuild when the commands change.

Second, the commands in the two rules were wrapped with $(call do,...),
and the $ signs for each command have been quoted with a second $.

Third, for each .o file being managed by signature, there’s an include of
a corresponding .sig file. The final line of the makefile includes foo.o.sig
(for foo.o) and bar.o.sig (for bar.o). Notice that -include is used instead of
just include in case the .sig file is missing (-include doesn’t generate an error
when one of the files to be included is not present).

80 Chapter 3

Before you see how this works, here are some examples of it in operation:

$ make
g++ -c -DDEBUG= -o foo.o foo.c
g++ -c -o bar.o bar.c
$ make
make: Nothing to be done for `all'.

First, there’s a clean build (with no .o files present) and then a rerun of
make to see that there’s nothing to do.

But setting DEBUG to 1 on the make command line now causes foo.o to
rebuild:

$ make DEBUG=1
g++ -c -DDEBUG=1 -o foo.o foo.c

This happens because its signature (the actual commands to be run to
build foo.o) has changed.

Of course, bar.o was not rebuilt because it was truly up-to-date (its object
code was new and there were no command changes). Run make DEBUG=1 again,
and it’ll say there’s nothing to be done:

$ make DEBUG=1
make: Nothing to be done for `all'.
$ make
g++ -c -DDEBUG= -o foo.o foo.c

But just typing make (going back to a non-debug build) rebuilds foo.o
again because DEBUG is now undefined.

The signature system also works for variables within recursive variables.
In GNU make, COMPILE.C actually expands CPPFLAGS to create the complete
compiler command line. Here’s what happens if CPPFLAGS is modified on the
GNU make command line by adding a definition:

$ make CPPFLAGS+=-DFOO=foo
g++ -DFOO=foo -c -DDEBUG= -o foo.o foo.c
g++ -DFOO=foo -c -o bar.o bar.c

Both foo.o and bar.o were rebuilt because CPPFLAGS changed (and because
CPPFLAGS was part of the commands used to build those two object files).

Of course, changing a variable that isn’t referenced doesn’t update any-
thing. For example:

$ make
g++ -c -DDEBUG= -o foo.o foo.c
g++ -c -o bar.o bar.c
$ make SOMEVAR=42
make: Nothing to be done for `all'.

Here we’re starting from a clean build and redefining SOMEVAR.

Building and Rebuilding 81

How Signature Works
To understand how signature works, first look inside a .sig file. The .sig files
are automatically generated by rules in the signature makefile for each rule
that uses the $(call do,...) form.

For example, here are the contents of the foo.o.sig file after the first
clean build was run:

$(eval @ := foo.o)
$(eval % :=)
$(eval < := foo.c)
$(eval ? := foo.o.force)
$(eval ^ := foo.c foo.o.force)
$(eval + := foo.c foo.o.force)
$(eval * := foo)

foo.o: foo.o.force

$(if $(call sne,$(COMPILE.C) -DDEBUG=$(DEBUG) -o $@ $<,\
g++ -c -DDEBUG= -o foo.o foo.c),$(shell touch foo.o.force))

The first seven lines capture the state of the automatic variables as
defined when the foo.o rule is being processed. We need the values of these
variables so we can compare the current commands for a rule (which likely
use automatic variables) with the commands the last time the rule was run.

Next comes the line foo.o: foo.o.force. This states that foo.o must be
rebuilt if foo.o.force is newer. It’s this line that causes foo.o to get rebuilt
when the commands change, and it’s the next line that touches foo.o.force
if the commands have changed.

The long $(if) statement uses the GMSL sne (string not equal) func-
tion to compare the current commands for foo.o (by expanding them)
against their value the last time they were expanded. If the commands have
changed, $(shell touch foo.o.force) is called.

Because the .sig files are processed when the makefile is being parsed
(they are just makefiles, read using include), all the .force files will have
been updated before any rules run. And so this small .sig file does all the
work of forcing an object file to rebuild when commands change.

The .sig files are created by signature:

include gmsl

last_target :=

dump_var = \$$(eval $1 := $($1))

define new_rule
@echo "$(call map,dump_var,@ % < ? ^ + *)" > $S
@$(if $(wildcard $F),,touch $F)
@echo $@: $F >> $S
endef

82 Chapter 3

define do
$(eval S := $@.sig)$(eval F := $@.force)$(eval C := $(strip $1))
$(if $(call sne,$@,$(last_target)),$(call new_rule),$(eval last_target := $@))
@echo "S(subst ",\",$(subst $$,\$$,$$(if $$(call sne,$(strip $1),$C),$$(shell touch $F))))" >> $S
$C
endef

signature includes the GMSL and then defines the important do vari-
able used to wrap the commands in a rule. When do is called, it creates the
appropriate .sig file containing the state of all the automatic variables.

The new_rule function called by do captures the automatic variables. It
uses the GMSL map function to call another function (dump_var) for each of
@ % < ? ^ + *. The new_rule function also ensures that the corresponding
.force file has been created.

In addition, do writes out the complex $(if) statement that contains the
unexpanded and expanded versions of the commands for the current rule.
Then it actually runs the commands (that’s the $C) at the end.

Limitations
The signature system has some limitations that could trap the unwary. First,
if the commands in a rule contain any side effects—for example, if they call
$(shell)—the system may misbehave if there was an assumption that the
side effect happens only once.

Second, it’s vital that signature is included before any of the .sig files.
Third, if the makefile is edited and the commands in a rule change, the

signature system will not notice. If that happens, it’s vital to regenerate the
corresponding target so the .sig is updated.

Try adding the following line at the end of the definition of new_rule:

@echo $F: Makefile >> $S

You can make the signature system automatically rebuild when the
makefile changes by having the makefile as a prerequisite to each of the
makefile’s targets. This line is the simplest way to achieve that.

Rebuilding When a File’s Checksum Changes
Besides having GNU make rebuild targets when commands change, another
common technique is to rebuild when the contents of a file change, not just
the file’s timestamp.

This usually comes up because the timestamps on generated code, or
in code extracted from a source code control system, are older than related
objects, so GNU make does not know to rebuild the object. This can happen
even when the contents of the file are different from the last time the object
was built.

Building and Rebuilding 83

A common scenario is that an engineer working on a build on their
local machine rebuilds all objects and later gets the latest version of source
files from source code control. Some older source control systems set the
timestamp on the source files to the timestamp of the file when it was
checked in to source control; in that case, newly built object files may have
timestamps that are newer than the (potentially changed) source code.

In this section you’ll learn a simple hack to get GNU make to do the right
thing (rebuild) when the contents of a source file change.

An Example Makefile
The simple makefile in Listing 3-2 builds object file foo.o from foo.c and
foo.h using the built-in rule to make a .o file from a .c:

.PHONY: all
all: foo.o

foo.o: foo.c foo.h

Listing 3-2: A simple makefile that builds foo.o from foo.c and foo.h

If either foo.c or foo.h are newer than foo.o, then foo.o will be rebuilt.
If foo.h were to change without updating its timestamp, GNU make

would do nothing. For example, if foo.h were updated from source code
control, this makefile might do the wrong thing.

To work around this problem, we need a way to force GNU make to
consider the contents of the file, not its timestamp. Because GNU make can
handle timestamps internally only, we need to hack the makefile so that file
timestamps are related to file contents.

Digesting File Contents
An easy way to detect a change in a file is to use a message digest function,
such as MD5, to generate a digest of the file. Because any change in the file
will cause the digest to change, just examining the digest will be enough to
detect a change in the file’s contents.

To force GNU make to check the contents of each file, we’ll associate a
file with the extension .md5 with every source code file to be tested. Each
.md5 file will contain the MD5 checksum of the corresponding source code file.

In Listing 3-2, source code files foo.c and foo.h will have associated .md5
files foo.c.md5 and foo.h.md5. To generate the MD5 checksum, we use the
md5sum utility: it outputs a hexadecimal string containing the MD5 checksum
of its input file.

If we arrange for the timestamp of the .md5 file to change when the check-
sum of the related file changes, GNU make can check the timestamp of the
.md5 file in lieu of the actual source file.

In our example, GNU make would check the timestamp of foo.c.md5 and
foo.h.md5 to determine whether foo.o needs to be rebuilt.

84 Chapter 3

The Modified Makefile
Here’s the completed makefile that checks the MD5 checksum of source
files so that objects are rebuilt when the contents of those files (and hence
their checksums) change:

to-md5 = $1 $(addsuffix .md5,$1)

.PHONY: all
all: foo.o

foo.o: $(call to-md5,foo.c foo.h)

%.md5: FORCE
 @$(if $(filter-out $(shell cat $@ 2>/dev/null),$(shell md5sum $*)),md5sum $* > $@)

FORCE:

Notice first that the prerequisite list for foo.o has changed from foo.c
foo.h to $(call to-md5,foo.c foo.h). The to-md5 function defined in the make-
file adds the suffix .md5 to all the filenames in its argument.

So after expansion, the line reads:

foo.o: foo.c foo.h foo.c.md5 foo.h.md5.

This tells GNU make to rebuild foo.o if either of the .md5 files is newer, as
well as if either foo.c or foo.h is newer.

To ensure that the .md5 files always contain the correct timestamp, they
are always rebuilt. Each .md5 file is remade by the %.md5: FORCE rule. The use
of the empty rule FORCE: means that the .md5 files are examined every time.
Use of FORCE here is a little like using .PHONY: if there’s no file called FORCE, GNU
make will build it (there’s no recipe so nothing happens) and then GNU make
will consider FORCE to be newer than the %.md5 file and rebuild it. Because we
can’t do .PHONY: %.md5, we use this FORCE trick instead.

The commands for the %.md5: FORCE rule will only actually rebuild the
.md5 file if it doesn’t exist or if the checksum stored in the .md5 file is differ-
ent from the corresponding file’s checksum, which works as follows:

1.	 $(shell md5sum $*) checksums the file that matches the % part of %.md5.
For example, when this rule is being used to generate the foo.h.md5 file,
then % matches foo.h and foo.h is stored in $*.

2.	 $(shell cat $@ 2>/dev/null) gets the contents of the current .md5 file (or
a blank if it doesn’t exist; note how the 2>/dev/null means that errors
are ignored). Then, the $(filter-out) compares the checksum retrieved
from the .md5 file and the checksum generated by md5sum. If they are the
same, the $(filter-out) is an empty string.

Building and Rebuilding 85

3.	 If the checksum has changed, the rule will actually run md5sum $* > $@,
which will update the .md5 file’s contents and timestamp. The stored
checksum will be available for later use when running GNU make again,
and the changed timestamp on the .md5 file will cause the related object
file to be built.

The Hack in Action
To see how the hack updates an object file when one of its prerequisites
changes checksum, let’s create files foo.c and foo.h and run GNU make:

$ touch foo.c foo.h
$ ls
foo.c foo.h makefile
$ make
cc -c -o foo.o foo.c
$ ls
foo.c foo.c.md5 foo.h foo.h.md5 foo.o makefile

GNU make generates the object file foo.o and two .md5 files, foo.c.md5 and
foo.h.md5. Each .md5 file contains the checksum of the file:

$ cat foo.c.md5
d41d8cd98f00b204e9800998ecf8427e foo.c

First, we verify that everything is up-to-date and then verify that chang-
ing the timestamp on either foo.c or foo.h causes foo.o to be rebuilt:

$ make
make: Nothing to be done for `all'.
$ touch foo.c
$ make
cc -c -o foo.o foo.c
$ make
make: Nothing to be done for `all'.
$ touch foo.h
$ make
cc -c -o foo.o foo.c

To demonstrate that changing the contents of a source file will cause
foo.o to be rebuilt, we can cheat by changing the contents of, say, foo.h and
then touch foo.o to make foo.o newer than foo.h, which would normally
mean that foo.o would not be built.

As a result, we know that foo.o is newer than foo.h but that foo.h’s con-
tents have changed since the last time foo.o was built:

$ make
make: Nothing to be done for `all'.
$ cat foo.h.md5
d41d8cd98f00b204e9800998ecf8427e foo.h
$ cat >> foo.h

86 Chapter 3

// Add a comment
$ touch foo.o
$ make
cc -c -o foo.o foo.c
$ cat foo.h.md5
65f8deea3518fcb38fd2371287729332 foo.h

You can see that foo.o was rebuilt, even though it was newer than all
the related source files, and that foo.h.md5 has been updated with the new
checksum of foo.h.

Improving the Code
We can make a couple of improvements to the code: the first is an optimi-
zation. When the checksum of a file has changed the rule to update, the
.md5 file actually ends up running md5sum twice on the same file with the
same result. That’s a waste of time. If you are using GNU make 3.80 or later,
it’s possible to store the output of md5sum $* in a temporary variable called
CHECKSUM and just use the variable:

%.md5: FORCE
 @$(eval CHECKSUM := $(shell md5sum $*))$(if $(filter-out \
$(shell cat $@ 2>/dev/null),$(CHECKSUM)),echo $(CHECKSUM) > $@)

The second improvement is to make the checksum insensitive to
changes in whitespace in a source file. After all, it would be a pity if two
developers’ differing opinions on the right amount of indentation caused
object files to rebuild when nothing else had changed.

The md5sum utility does not have a way of ignoring whitespace, but it’s
easy enough to pass the source file through tr to strip whitespace before
handing it to md5sum for checksumming. (However, note that removing all
whitespace might not be a good idea, at least not for most languages.)

Automatic Dependency Generation
Any project larger than a simple example faces a dependency management
problem. Dependencies must be generated and kept up to date as engineers
modify the project. GNU make provides no tools for dealing with this. All
GNU make provides is a mechanism for expressing the relationships between
files with its familiar target : prerequisite1 prerequisite2 ... syntax.

GNU make’s dependency syntax is flawed because it is more than just a
list of prerequisites: the first prerequisite has a special meaning. Anything
to the right of the : is a prerequisite, but the first prerequisite where there’s
a recipe (that is, commands) is special: it’s the prerequisite that is assigned
to the automatic variable $< and is also frequently the prerequisite passed to
the compiler (or other command) to generate the target.

Building and Rebuilding 87

The $< variable is also special in another way. Sometimes a target will
have a recipe and other rules specifying prerequisites. For example, it’s not
uncommon to see something like this:

foo.o: foo.c
4 @compile -o $@ $<

foo.o: myheader.h string.h

The value of $< is set from the rule that has a recipe (it will be foo.c in
this case).

Take a look at this:

foo.o: foo.c header.h system.h
 @echo Compiling $@ from $<...

which outputs

$ make
Compiling foo.o from foo.c...

Here foo.o is built if foo.c, header.h, or system.h change, but the rule also
states that foo.o is made from foo.c. Say our example were written like this:

foo.o: foo.c
foo.o: header.h system.h
 @echo Compiling $@ from $<...

The output would be:

$ make
Compiling foo.o from header.h...

This is clearly wrong.

An Example Makefile
The biggest problem is generating all the rules expressing all the dependen-
cies for a large project. The rest of this section uses the following contrived
example makefile as a starting point:

.PHONY: all
all: foo.o bar.o baz.o

foo.o: foo.c foo.h common.h header.h
bar.o: bar.c bar.h common.h header.h ba.h
baz.o: baz.c baz.h common.h header.h ba.h

88 Chapter 3

Three object files (foo.o, bar.o, and baz.o) are built from corresponding
.c files (foo.c, bar.c, and baz.c). Each .o file has dependencies on various
different header files, as shown in the last three lines of the makefile. The
makefile uses GNU make’s built-in rules to perform compilation using the
system’s compiler.

There’s no mention here of the final executable being built. The reason
is that this example focuses on dealing with dependencies between sources
and objects; relationships between objects are usually easier to maintain by
hand because there are fewer of them and the relationships are part of the
product design.

makedepend and make depend
Because maintaining any real makefile by hand is impossible, many projects
use the widely available makedepend program. makedepend reads C and C++
files, looks at the #include statements, opens the files that are included, and
builds the dependency lines automatically. A basic way of incorporating
makedepend in a project is a special depend target, as shown in Listing 3-3.

.PHONY: all
all: foo.o bar.o baz.o

SRCS = foo.c bar.c baz.c

DEPENDS = dependencies.d
.PHONY: depend
depend:
 @makedepend -f - $(SRCS) > $(DEPENDS)

-include $(DEPENDS)

Listing 3-3: Using makedepend in your makefile

Executing make depend with this makefile causes the depend rule to exe-
cute, which runs makedepend on the sources (defined in the SRCS variable)
and outputs the dependency lines to a file called dependencies.d (defined
by the DEPENDS variable).

The makefile adds the dependencies in its final line by including the
dependencies.d file. dependencies.d would look like this:

DO NOT DELETE

foo.o: foo.h header.h common.h
bar.o: bar.h header.h common.h ba.h
baz.o: baz.h header.h common.h ba.h

Notice that makedepend doesn’t try to define the relationship between
an object file (like foo.o) and the source file it is made from (foo.c). In this
case GNU make’s standard rules will find the related .c file automatically.

Building and Rebuilding 89

Automating makedepend and Removing make depend
Two problems exist with the make depend style. Running make depend can
be slow, because every source file must be searched, even if there are no
changes. Also, it’s a manual step: before every make the user will have to do
make depend to ensure that the dependencies are correct. The solution to
these problems is automation.

Listing 3-4 shows another version of the makefile from Listing 3-3:

.PHONY: all
all: foo.o bar.o baz.o

SRCS = foo.c bar.c baz.c

%.d : %.c
 @makedepend -f - $< | sed 's,\($*\.o\)[:]*,\1 $@ : ,g' > $@

-include $(SRCS:.c=.d)

Listing 3-4: Automatically running makedepend when needed

This version still uses makedepend to generate dependencies but auto-
mates the process and only runs makedepend for sources that have changed.
It works by associating a .d file with each .c. For example, foo.o (built from
foo.c) has a foo.d file that just contains the dependency line for foo.o.

Here are the contents of foo.d:

DO NOT DELETE

foo.o foo.d : foo.h header.h common.h

Notice one addition: this line specifies when to rebuild foo.o, but also
that foo.d should be rebuilt under the same conditions. If any of the sources
associated with foo.o change, foo.d is rebuilt. foo.c isn’t mentioned in this
list because it’s mentioned as part of the pattern rule for rebuilding a .d file
(the %.d : %.c rule in the main makefile means that foo.d will be rebuilt if
foo.c changes). foo.d was added to the dependency line created by makedepend
using the sed magic shown in Listing 3-4.

The final line of the main makefile includes all the .d files: the
$(SRCS:.c=.d) transforms the list of sources in the SRCS variable by chang-
ing the extension from .c to .d. The include also tells GNU make to check
whether the .d files need rebuilding.

GNU make will check if there are rules to rebuild included makefiles (in
this case the .d files), rebuild them if necessary (following the dependencies
specified in the makefile), and then restart. This makefile remaking feature
(http://www.gnu.org/software/make/manual/html_node/Remaking-Makefiles.html)
means that simply typing make will do the right thing: it’ll rebuild any depen-
dency files that need rebuilding but only if the sources have changed. Then
GNU make will perform the build, taking the new dependencies into account.

90 Chapter 3

Making Deleted Files Disappear from Dependencies
Unfortunately, our makefile breaks with a fatal error if a source file is
removed. If header.h is no longer needed, all references to it are removed
from the .c files, the file is removed from disk, and running make produces
the following error:

$ make
No rule to make target `header.h', needed by `foo.d'.

This happens because header.h is still mentioned in foo.d as a prerequi-
site of foo.d; hence, foo.d cannot be rebuilt. You can fix this by making the
generation of foo.d smarter:

DO NOT DELETE

foo.d : $(wildcard foo.h header.h common.h)
foo.o : foo.h header.h common.h

The new foo.d includes the dependencies for foo.o and foo.d separately.
foo.d’s dependencies are wrapped in a call to GNU make’s $(wildcard) function.

And here’s the updated makefile with a new invocation of makedepend fol-
lowed by a sed line that creates the modified .d file:

.PHONY: all
all: foo.o bar.o baz.o

SRCS = foo.c bar.c baz.c

%.d : %.c
 @makedepend -f - $< | sed 's,\($*\.o\)[:]*\(.*\),$@ : $$\(wildcard \2\)\n\1 : \2,g' > $@

-include $(SRCS:.c=.d)

Removing a header file now doesn’t break the make: when foo.d is parsed,
the dependency line for foo.d is passed through $(wildcard). When there are
no globbing symbols like * or ? in the filename, $(wildcard) acts as a simple
existence filter, removing from the list any files that do not exist. So if
header.h had been removed, the first line of foo.d would be equivalent to this:

foo.d : foo.h common.h

The make would work correctly. This example makefile now works
when .c files are added (the user just updates SRCS and the new .d file is
created automatically), when .c files are removed (the user updates SRCS
and the old .d file is ignored), when headers are added (because that
requires altering an existing .c or .h, the .d file will be regenerated), and
when headers are removed (the $(wildcard) hides the deletion and the .d
file is regenerated).

Building and Rebuilding 91

A possible optimization is to remove the need for GNU make to restart
by merging the rule that makes the .d file into the rule that makes the .o:

.PHONY: all
all: foo.o bar.o baz.o

SRCS = foo.c bar.c baz.c

%.o : %.c
 @makedepend -f - $< | sed 's,\($*\.o\)[:]*\(.*\),$@ : $$\(wildcard \2\)\n\1 : \2,g' > $*.d
 @$(COMPILE.c) -o $@ $<

-include $(SRCS:.c=.d)

Because the .d file is updated if and only if the .o file needs to be
updated (both are updated when any of the sources for the .o change), it’s
possible to have the makedepend happen at the same time as the compilation.

This rule uses $*, another GNU make variable. $* is the part of the pat-
tern %.c that matches the %. If this rule is building foo.o from foo.c, $* is just
foo. $* creates the name of the .d file that makedepend writes to.

This version does not use GNU make’s makefile remaking system. There
are no rules for making .d files (they are made as a side effect of making
the .o files), so GNU make doesn’t have to restart. This provides the best
combination of accuracy and speed.

In general, it’s a bad idea to have a rule that makes multiple files because
it’s impossible for GNU make to find the rule that makes a file if it’s created
as a side effect of something else. In this case, that behavior is desired: we
want to hide the creation of .d files from GNU make so it doesn’t try to make
them and then have to restart.

Tom Tromey proposed a similar idea without the $(wildcard) trick. You
can find this and more information about building dependency files on
GNU make maintainer Paul Smith’s website at http://make.mad-scientist.net/
papers/advanced-auto-dependency-generation/.

Doing Away with makedepend
Additionally, it’s possible to omit makedepend altogether if you are using
GNU gcc, llvm, or clang, or a similar compiler.

An -MD option does the work of makedepend at the same time as the
compilation:

.PHONY: all
all: foo.o bar.o baz.o

SRCS = foo.c bar.c baz.c

%.o : %.c
 @$(COMPILE.c) -MD -o $@ $<
 @sed -i 's,\($*\.o\)[:]*\(.*\),$@ : $$\(wildcard \2\)\n\1 : \2,g' $*.d

-include $(SRCS:.c=.d)

http://make.mad-scientist.net/papers/advanced-auto-dependency-generation/
http://make.mad-scientist.net/papers/advanced-auto-dependency-generation/

92 Chapter 3

For example, the compilation step for foo.o will create foo.d from foo.c.
Then, sed is run on the foo.d to add the extra line for foo.d containing the
$(wildcard).

Using gcc -MP
gcc also has the -MP option, which attempts to deal with the problem of dis-
appearing files by creating empty rules to “build” missing files. For example,
it’s possible to eliminate the sed magic completely, using the -MP option in
place of -MD:

.PHONY: all
all: foo.o bar.o baz.o

SRCS = foo.c bar.c baz.c

%.o : %.c
 @$(COMPILE.c) -MP -o $@ $<

-include $(SRCS:.c=.d)

The foo.d file will look like this:

foo.o : foo.h header.h common.h
foo.h :
header.h : 
common.h :

If, for example, foo.h is deleted, make will not complain because it will
find the empty rule (foo.h :) to build it, and the missing file error will be
prevented. However, it is vital that the foo.d file be updated every time foo.o
is built. If it’s not, foo.d will still contain foo.h as a prerequisite, and foo.o
will rebuild every time make is run because make will attempt to build foo.h
(forcing a foo.o build) using the empty rule.

Atomic Rules in GNU make
A fundamental law of GNU make physics is that each rule builds one and
only one file (called a target). There are exceptions to that rule (which we’ll
see in the rest of this section), but nevertheless, for any normal GNU make
rule such as

a: b c
 @command

there’s only one file mentioned to the left of the :. That’s the filename that
gets put into the $@ automatic variable. It’s expected that command will actu-
ally update that file.

Building and Rebuilding 93

This section explains what to do if a command updates more than one
file and how to express that so GNU make knows that more than one file was
updated and behaves correctly.

What Not to Do
Imagine a command that makes two files (a and b) from the same prereq-
uisites in a single step. In this section, such a command is simulated with
touch a b, but in reality it could be much more complex than that.

Listing 3-5 shows what not to do:

.PHONY: all
all: a b

a b: c d
 touch a b

Listing 3-5: What not to do

At first glance Listing 3-5 looks correct; it seems to say that a and b are
built from c and d by a single command. If you run this in make, you can get
output like this (especially if you use the -j option to run a parallel build):

$ make
touch a b
touch a b

The command was run twice. In this case that’s harmless, but for a real
command that does real work, running twice is almost certainly the wrong
thing to do. Also, if you use the -j option to run in parallel, you can end up
with the command running more than once and simultaneously with itself.

The reason is that GNU make actually interprets the makefile as:

.PHONY: all
all: a b

a: c d
 touch a b

b: c d
 touch a b

There are two separate rules (one declares that it builds a; the other
says it builds b) that both build a and b.

Using Pattern Rules
GNU make does have a way to build more than one target in a single rule
using a pattern rule. Pattern rules can have an arbitrary number of target
patterns and still be treated as a single rule.

94 Chapter 3

For example:

%.foo %.bar %.baz:
 command

This means that files with the extensions .foo, .bar, and .baz (and of
course the same prefix that will match against the %) will be built with a
single invocation of command.

Suppose that the makefile looked like this:

.PHONY: all
all: a.foo a.bar a.baz

%.foo %.bar %.baz:
 command

Then, command would be invoked just once. In fact, it’s enough to specify
that just one of the targets and the pattern rule will run:

.PHONY: all
all: a.foo

%.foo %.bar %.baz:
 command

This can be very useful. For example:

$(OUT)/%.lib $(OUT)/%.dll: $(VERSION_RESOURCE)
 link /nologo /dll /fixed:no /incremental:no \
 /map:'$(call to_dos,$(basename $@).map)' \
 /out:'$(call to_dos,$(basename $@).dll)' \
 /implib:'$(call to_dos,$(basename $@).lib)' \
 $(LOADLIBES) $(LDLIBS) \
 /pdb:'$(basename $@).pdb' \
 /machine:x86 \
 $^

This is an actual rule from a real makefile that builds a .lib and its
associated .dll in one go.

Of course, if the files don’t have a common part in their names, using a
pattern rule won’t work. It doesn’t work for the simple example at the begin-
ning of this section, but there is an alternative.

Using a Sentinel File
A possible workaround to using a pattern rule is to introduce a single file
to indicate whether any of the targets of a multi-target rule have been built.

Building and Rebuilding 95

Creating a single “indicator” file turns multiple files into a single file, and
GNU make understands single files. Here’s Listing 3-5, rewritten:

.PHONY: all
all: a b

a b: .sentinel
 @:

.sentinel: c d
 touch a b
 touch .sentinel

The rule to build a and b can be run only once because only one pre-
requisite is specified (.sentinel). If c or d are newer, .sentinel gets rebuilt
(and hence a and b are rebuilt). If the makefile asks for either a or b, they
are rebuilt via the .sentinel file.

The funny @: command in the a b rule just means that there are com-
mands to build a and b but they do nothing.

It would be nice to make this transparent. That’s where the atomic func-
tion comes in. The atomic function sets up the sentinel file automatically,
based on the names of the targets to be built, and creates the necessary rules:

sp :=
sp +=
sentinel = .sentinel.$(subst $(sp),_,$(subst /,_,$1))
atomic = $(eval $1: $(call sentinel,$1) ; @:)$(call sentinel,$1): $2 ; touch $$@

.PHONY: all
all: a b

$(call atomic,a b,c d)
 touch a b

All we’ve done is replace the original a b : c d rule with a call to atomic.
The first argument is the list of targets that need to be built atomically; the
second argument is the list of prerequisites.

atomic uses the sentinel function to create a unique sentinel filename
(in the case of targets a b the sentinel filename is .sentinel.a_b) and then
sets up the necessary rules.

Expanding atomic in this makefile would be the same as doing this:

.PHONY: all
all: a b

a b: .sentinel.a_b ; @:

.sentinel.a_b: c d ; touch $@
 touch a b

96 Chapter 3

There’s one flaw with this technique. If you delete a or b, you must also
delete the related sentinel file or the files won’t get rebuilt.

To work around this, you can have the makefile delete the sentinel file
if necessary by checking to see if any of the targets being built are missing.
Here’s the updated code:

sp :=
sp +=
sentinel = .sentinel.$(subst $(sp),_,$(subst /,_,$1))
atomic = $(eval $1: $(call sentinel,$1) ; @:)$(call sentinel,$1): \
$2 ; touch $$@ $(foreach t,$1,$(if $(wildcard $t),,$(shell rm -f \
$(call sentinel,$1))))

.PHONY: all
all: a b

$(call atomic,a b,c d)
 touch a b

Now atomic runs through the targets. If any are missing—detected by
the $(wildcard)—the sentinel file is deleted.

Painless Non-recursive make
Once a makefile project reaches a certain size (usually when it has depen-
dencies on subprojects), it’s inevitable that the build master writes a rule
that contains a call to $(MAKE). And right there the build master has created
a recursive make: a make that executes an entire other make process. It’s incred-
ibly tempting to do this because conceptually, recursive make is simple: if you
need to build a subproject, just go to its directory and run make via $(MAKE).

But it has one major flaw: once you start a separate make process, all
information about dependencies is lost. The parent make doesn’t know
whether the subproject make really needed to happen, so it has to run it
every time, and that can be slow. Fixing that problem isn’t easy, but non-
recursive makes are powerful once implemented.

One common objection to using non-recursive make is that with recur-
sive make it’s possible to go to anywhere in a source code tree and type make.
Doing so typically builds the objects that are defined by the makefile at that
level in the tree (and possibly below that, if the makefile recurses).

Non-recursive make systems (based on include statements instead of make
invocations) often do not offer this flexibility, and GNU make must be run
from the top-level directory. Even though non-recursive GNU make is typi-
cally more efficient (running from the top-level directory should be quick),
it’s important to be able to give developers the same level of functionality as
a recursive make system.

Building and Rebuilding 97

This section outlines a pattern for a non-recursive GNU make system that
supports the familiar make-anywhere style common to recursive GNU make
systems. Typing make in a directory will build everything in that directory
and below, but there are no recursive $(MAKE) invocations. The single make
that runs knows about all the dependencies across projects and subprojects,
and it can build efficiently.

A Simple Recursive Make
Imagine a project with the following subdirectories:

/src/
/src/library/
/src/executable/

/src/ is the top-level directory and is where you’d type make to get a full
build. Inside /src/ is a library/ directory that builds a library called lib.a
from source files lib1.c and lib2.c:

/src/library/lib1.c
/src/library/lib2.c

The /src/executable/ directory builds an executable file called exec from
two source files (foo.c and bar.c) and links with the library lib.a:

/src/executable/foo.c
/src/executable/bar.c

The classic recursive make solution is to put a makefile in each subdirec-
tory. Each makefile contains rules to build that directory’s objects, and a
top-level makefile recurses into each subdirectory. Here are the contents of
such a recursive makefile (/src/makefile):

SUBDIRS = library executable

.PHONY: all
all:
 for dir in $(SUBDIRS); do \
 $(MAKE) -C $$dir; \
 done

This enters each directory in turn and runs make to build first the library
and then the executable. The dependency between the executable and the
library (that is, the fact that the library needs to be built before the execut-
able) is implicit in the order in which the directories are specified in SUBDIRS.

98 Chapter 3

Here’s an example of an improvement on using a for loop using phony
targets for each directory:

SUBDIRS = library executable

.PHONY: $(SUBDIRS)
$(SUBDIRS):
 $(MAKE) -C $@

.PHONY: all
all: $(SUBDIRS)

executable: library

You unwind the loop inside the rule for all, create separate rules for
each subdirectory, and explicitly specify the dependency between executable
and library. This code is much clearer, but it’s still recursive with separate
make invocations for each subdirectory.

A Flexible Non-recursive make System
When moving to non-recursive make, the ideal top-level makefile would look
like Listing 3-6.

SUBDIRS = library executable

include $(addsuffix /makefile,$(SUBDIRS))

Listing 3-6: A small non-recursive makefile

This simply says to include the makefile from each subdirectory. The
trick is to make that work! Before you see how, here are the skeletons of the
contents of the makefiles in the library and executable subdirectories:

/src/library/Makefile

include root.mak
include top.mak

SRCS := lib1.c lib2.c
BINARY := lib
BINARY_EXT := $(_LIBEXT)
include bottom.mak

and

/src/executable/Makefile

include root.mak
include top.mak

Building and Rebuilding 99

SRCS := foo.c foo.c
BINARY := exec
BINARY_EXT := $(_EXEEXT)

include bottom.mak

Each of those makefiles specifies the source files to be built (in the SRCS
variable), the name of the final linked binary (in the BINARY variable), and
the type of the binary (using the BINARY_EXT variable, which is set from spe-
cial variables _LIBEXT and _EXEEXT).

Both the makefiles include the common makefiles root.mak, top.mak, and
bottom.mak, which are located in the /src/ directory.

Because the .mak included makefiles are not in the subdirectories,
GNU make needs to go looking for them. To find the .mak files in /src,
do this:

$ make -I /src

Here, you use the -I command line option that adds a directory to the
include search path.

It’s unfortunate to ask a user to add anything to the make command line.
To avoid that, you can create a simple method of automatically walking up
the source tree to find the .mak files. Here’s the actual makefile for /src/
library:

sp :=
sp +=
_walk = $(if $1,$(wildcard /$(subst $(sp),/,$1)/$2) $(call _walk,$(wordlist 2,$(words $1),x $1),$2))
_find = $(firstword $(call _walk,$(strip $(subst /, ,$1)),$2))
_ROOT := $(patsubst %/root.mak,%,$(call _find,$(CURDIR),root.mak))

include $(_ROOT)/root.mak
include $(_ROOT)/top.mak

SRCS := lib1.c lib2.c
BINARY := lib
BINARY_EXT := $(_LIBEXT)

include $(_ROOT)/bottom.mak

The _find function walks up a directory tree starting from the directory
in $1, looking for the file named $2. The actual find is achieved by calling
the _walk function, which walks up the tree, finding every instance of the
file $2 in each of the successively shorter paths from $1.

The block of code at the start of the makefile finds the location of root.mak,
which is in the same directory as top.mak and bottom.mak (namely, /src), and
saves that directory in _ROOT.

Then, the makefile can use $(_ROOT)/ to include the root.mak, top.mak, and
bottom.mak makefiles without any need to type anything other than make.

100 Chapter 3

Here are the contents of the first included makefile (root.mak):

_push = $(eval _save$1 := $(MAKEFILE_LIST))
_pop = $(eval MAKEFILE_LIST := $(_save$1))
_INCLUDE = $(call _push,$1)$(eval include $(_ROOT)/$1/Makefile)$(call _pop,$1)
DEPENDS_ON = $(call _INCLUDE,$1)
DEPENDS_ON_NO_BUILD = $(eval _NO_RULES := T)$(call _INCLUDE,$1)$(eval _NO_RULES :=)

For the moment, ignore its contents and return to what these functions
are used for when looking at dependencies between modules. The real work
begins with top.mak:

_OUTTOP ?= /tmp/out

.PHONY: all
all:

_MAKEFILES := $(filter %/Makefile,$(MAKEFILE_LIST))
_INCLUDED_FROM := $(patsubst $(_ROOT)/%,%,$(if $(_MAKEFILES), \
$(patsubst %/Makefile,%,$(word $(words $(_MAKEFILES)),$(_MAKEFILES)))))
ifeq ($(_INCLUDED_FROM),)
_MODULE := $(patsubst $(_ROOT)/%,%,$(CURDIR))
else
_MODULE := $(_INCLUDED_FROM)
endif
_MODULE_PATH := $(_ROOT)/$(_MODULE)
_MODULE_NAME := $(subst /,_,$(_MODULE))
$(_MODULE_NAME)_OUTPUT := $(_OUTTOP)/$(_MODULE)

_OBJEXT := .o
_LIBEXT := .a
_EXEEXT :=

The _OUTTOP variable defines the top-level directory into which all
binary output (object files and so on) will be placed. Here it has the
default value of /tmp/out, and it’s defined with ?= so it can be overridden
on the command line.

Next, top.mak sets up the default target for GNU make as the classic all.
Here it has no dependencies, but they are added later for each module that
will be built.

Thereafter, a number of variables end up setting the _MODULE_PATH to the
full path to the module directory being built. For example, when building
the library module, _MODULE_PATH would be /src/library. Setting this vari-
able is complex because determining the module directory has to be inde-
pendent of the directory from which GNU make was executed (so that the
library can be built from the top-level, for a make all, or from the individual
library directory, for an individual developer build, or the library can even
be included as a dependency on a different module).

The _MODULE_NAME is simply the path relative to the root of the tree with
/ replaced by _. In Listing 3-5, the two modules have _MODULE_NAMEs: library

Building and Rebuilding 101

and executable. But if library had a subdirectory containing a module called
sublibrary, then its _MODULE_NAME would be library_sublibrary.

The _MODULE_NAME is also used to create the $(_MODULE_NAME)_OUTPUT spe-
cial variable, which has a computed name based on _MODULE_NAME. So for the
library module, the variable library_OUTPUT is created with the full path of
the directory into which library’s object files should be written. The output
path is based on _OUTTOP and the relative path to the module being built. As
a result, the /tmp/out tree mirrors the source tree.

Finally, some standard definitions of extensions used on filenames are
set up. Definitions for Linux systems are used here, but these can easily be
changed for systems such as Windows that don’t use .o for an object file or
.a for a library.

bottom.mak uses these variables to set up the rules that will actually build
the module:

$(_MODULE_NAME)_OBJS := $(addsuffix $(_OBJEXT),$(addprefix \
$($(_MODULE_NAME)_OUTPUT)/,$(basename $(SRCS)))) $(DEPS)
$(_MODULE_NAME)_BINARY := $($(_MODULE_NAME)_OUTPUT)/$(BINARY)$(BINARY_EXT)

ifneq ($(_NO_RULES),T)
ifneq ($($(_MODULE_NAME)_DEFINED),T)
all: $($(_MODULE_NAME)_BINARY)

.PHONY: $(_MODULE_NAME)
$(_MODULE_NAME): $($(_MODULE_NAME)_BINARY)
_IGNORE := $(shell mkdir -p $($(_MODULE_NAME)_OUTPUT))

_CLEAN := clean-$(_MODULE_NAME)
.PHONY: clean $(_CLEAN)
clean: $(_CLEAN)
$(_CLEAN):
 rm -rf $($(patsubst clean-%,%,$@)_OUTPUT)

$($(_MODULE_NAME)_OUTPUT)/%.o: $(_MODULE_PATH)/%.c
 @$(COMPILE.c) -o '$@' '$<'
$($(_MODULE_NAME)_OUTPUT)/$(BINARY).a: $($(_MODULE_NAME)_OBJS)
 @$(AR) r '$@' $^
 @ranlib '$@'
$($(_MODULE_NAME)_OUTPUT)/$(BINARY)$(_EXEEXT): $($(_MODULE_NAME)_OBJS)
 @$(LINK.cpp) $^ -o'$@'

$(_MODULE_NAME)_DEFINED := T
endif
endif

The first thing bottom.mak does is set up two variables with computed
names: $(_MODULE_NAME)_OBJS (which is the list of object files in the mod-
ule computed from the SRCS variable by transforming the extension) and
$(_MODULE_NAME)_BINARY (which is the name of the binary file created by the
module; this would typically be the library or executable being built).

102 Chapter 3

We include the DEPS variable, so the $(_MODULE_NAME)_OBJS variable also
includes any object files that the module needs but doesn’t build. Later
you’ll see how this is used to define a dependency between the library and
executable.

Next, if rules for this module have not previously been set up (con-
trolled by the $(_MODULE_NAME)_DEFINED variable) and have not been explicitly
disabled by the _NO_RULES variable, the actual rules to build the module are
defined.

In this example, rules for Linux are shown. This is where you’d change
this example for another operating system.

all has the current binary, from $(_MODULE_NAME)_BINARY, added as a
prerequisite so that the module gets built when a full build is done. Then
there’s a rule that associates the module name with the module binary so
that it’s possible to type something like make library at the top level of the
build to build just the library.

Then there’s a general clean rule and a module-specific clean (for the
library module there’s a rule called clean-library to just clean its objects).
clean is implemented as a simple rm -rf because all the output is organized
in a specific subdirectory of _OUTTOP.

After that a $(shell) is used to set up the directory where the module’s
output will go. Finally, specific rules associate the object files in this mod-
ule’s output directory with source files in this module’s source directory.

With all that infrastructure in place, we can finally come to the make-
file in the executable directory:

sp :=
sp +=
_walk = $(if $1,$(wildcard /$(subst $(sp),/,$1)/$2) $(call _walk,$(wordlist 2,$(words $1),x $1),$2))
_find = $(firstword $(call _walk,$(strip $(subst /, ,$1)),$2))
_ROOT := $(patsubst %/root.mak,%,$(call _find,$(CURDIR),root.mak))

include $(_ROOT)/root.mak

$(call DEPENDS_ON,library)

include $(_ROOT)/top.mak

SRCS := foo.c bar.c
BINARY := exec
BINARY_EXT := $(_EXEEXT)
DEPS := $(library_BINARY)

include $(_ROOT)/bottom.mak

This looks a lot like the makefile for the library, but there are differ-
ences. Because the executable needs the library, the DEPS line specifies
that the executable depends on the binary file created by the library. And
because each module has unique variables for objects and binaries, it’s
easy to define that dependency by referring to $(library_BINARY), which will
expand to the full path to the library file created by the library module.

Building and Rebuilding 103

To ensure that $(library_BINARY) is defined, it’s necessary to include the
makefile from the library directory. The root.mak file provides two functions
that make this trivial: DEPENDS_ON and DEPENDS_ON_NO_BUILD.

DEPENDS_ON_NO_BUILD just sets up the variables for the specified module so
they can be used in the makefile. If that function were used in the executable
makefile, the library (lib.a) would have to exist for the executable to build
successfully. On the other hand, DEPENDS_ON is used here to ensure that the
library will get built if necessary.

DEPENDS_ON_NO_BUILD provides functionality similar to a classic recursive
build, which doesn’t know how to build that library but depends on it.
DEPENDS_ON is more flexible because without recursion, you can specify a
relationship and make sure that code is built.

Using the Non-recursive make System
The non-recursive make system provides great flexibility. Here are a few
examples that illustrate that the non-recursive make system is just as flexible
as a recursive one (and more so!).

Building everything from the top level is a simple make (in these
examples, we use the command make -n so the commands are clearly
shown):

$ cd /src
$ make -n
cc -c -o '/tmp/out/library/lib1.o' '/home/jgc/doc/nonrecursive/library/lib1.c'
cc -c -o '/tmp/out/library/lib2.o' '/home/jgc/doc/nonrecursive/library/lib2.c'
ar r '/tmp/out/library/lib.a' /tmp/out/library/lib1.o /tmp/out/library/lib2.o
ranlib '/tmp/out/library/lib.a'
cc -c -o '/tmp/out/executable/foo.o' '/home/jgc/doc/nonrecursive/executable/foo.c'
cc -c -o '/tmp/out/executable/bar.o' '/home/jgc/doc/nonrecursive/executable/bar.c'
g++ /tmp/out/executable/foo.o /tmp/out/executable/bar.o /tmp/out/library/lib.a -o'/tmp/out/
executable/exec'

Cleaning everything is simple too:

$ cd /src
$ make -n clean
rm -rf /tmp/out/library
rm -rf /tmp/out/executable

From the top-level directory, it’s possible to ask for any individual mod-
ule to be built or cleaned:

$ cd /src
$ make -n clean-library
rm -rf /tmp/out/library
$ make -n library
cc -c -o '/tmp/out/library/lib1.o' '/home/jgc/doc/nonrecursive/library/lib1.c'
cc -c -o '/tmp/out/library/lib2.o' '/home/jgc/doc/nonrecursive/library/lib2.c'
ar r '/tmp/out/library/lib.a' /tmp/out/library/lib1.o /tmp/out/library/lib2.o
ranlib '/tmp/out/library/lib.a'

104 Chapter 3

And if we ask that the executable module be built, the library gets built
at the same time because of the dependency:

$ cd /src
$ make -n executable
cc -c -o '/tmp/out/executable/foo.o' '/home/jgc/doc/nonrecursive/executable/foo.c'
cc -c -o '/tmp/out/executable/bar.o' '/home/jgc/doc/nonrecursive/executable/bar.c'
cc -c -o '/tmp/out/library/lib1.o' '/home/jgc/doc/nonrecursive/library/lib1.c'
cc -c -o '/tmp/out/library/lib2.o' '/home/jgc/doc/nonrecursive/library/lib2.c'
ar r '/tmp/out/library/lib.a' /tmp/out/library/lib1.o /tmp/out/library/lib2.o
ranlib '/tmp/out/library/lib.a'
g++ /tmp/out/executable/foo.o /tmp/out/executable/bar.o /tmp/out/library/lib.a -o'/tmp/out/
executable/exec'

Okay, so much for the top level. If we pop down into the library mod-
ule, we can build or clean it just as easily:

$ cd /src/library
$ make -n clean
rm -rf /tmp/out/library
$ make -n
cc -c -o '/tmp/out/library/lib1.o' '/home/jgc/doc/nonrecursive/library/lib1.c'
cc -c -o '/tmp/out/library/lib2.o' '/home/jgc/doc/nonrecursive/library/lib2.c'
ar r '/tmp/out/library/lib.a' /tmp/out/library/lib1.o /tmp/out/library/lib2.o
ranlib '/tmp/out/library/lib.a'

Of course, doing this in the executable directory will build the library
as well:

$ cd /src/executable
$ make -n
cc -c -o '/tmp/out/library/lib1.o' '/home/jgc/doc/nonrecursive/library/lib1.c'
cc -c -o '/tmp/out/library/lib2.o' '/home/jgc/doc/nonrecursive/library/lib2.c'
ar r '/tmp/out/library/lib.a' /tmp/out/library/lib1.o /tmp/out/library/lib2.o
ranlib '/tmp/out/library/lib.a'
cc -c -o '/tmp/out/executable/foo.o' '/home/jgc/doc/nonrecursive/executable/foo.c'
cc -c -o '/tmp/out/executable/bar.o' '/home/jgc/doc/nonrecursive/executable/bar.c'
g++ /tmp/out/executable/foo.o /tmp/out/executable/bar.o /tmp/out/library/lib.a -o'/tmp/out/
executable/exec'

What About Submodules?
Suppose that the source tree was actually

/src/
/src/library/
/src/library/sublibrary
/src/executable/

Building and Rebuilding 105

where there’s an additional sublibrary under the library that builds slib.a
from slib1.c and slib2.c using the following makefile:

sp :=
sp +=
_walk = $(if $1,$(wildcard /$(subst $(sp),/,$1)/$2) $(call _walk,$(wordlist 2,$(words $1),x $1),$2))
_find = $(firstword $(call _walk,$(strip $(subst /, ,$1)),$2))
_ROOT := $(patsubst %/root.mak,%,$(call _find,$(CURDIR),root.mak))

include $(_ROOT)/root.mak
include $(_ROOT)/top.mak

SRCS := slib1.c slib2.c
BINARY := slib
BINARY_EXT := $(_LIBEXT)

include $(_ROOT)/bottom.mak

To specify that library has a dependency of sublibrary is as simple as
adding a DEPENDS_ON call to the makefile in the library directory:

sp :=
sp +=
_walk = $(if $1,$(wildcard /$(subst $(sp),/,$1)/$2) $(call _walk,$(wordlist 2,$(words $1),x $1),$2))
_find = $(firstword $(call _walk,$(strip $(subst /, ,$1)),$2))
_ROOT := $(patsubst %/root.mak,%,$(call _find,$(CURDIR),root.mak))

include $(_ROOT)/root.mak

$(call DEPENDS_ON,library/sublibrary)

include $(_ROOT)/top.mak

SRCS := lib1.c lib2.c
BINARY := lib
BINARY_EXT := $(_LIBEXT)

include $(_ROOT)/bottom.mak

In this example, there’s no DEPS line, so the library doesn’t depend on
sublibrary at the object level. We’re simply declaring sublibrary as a sub
module of library that needs to be built if library is.

Going back and repeating the previous examples, we see that the ​
sublibrary has been successfully included in the library build (and auto-
matically in the executable build).

Here’s the full build from the top, followed by a clean:

$ cd /src
$ make -n
cc -c -o '/tmp/out/library/sublibrary/slib1.o' '/home/jgc/doc/nonrecursive/library/sublibrary/
slib1.c'

106 Chapter 3

cc -c -o '/tmp/out/library/sublibrary/slib2.o' '/home/jgc/doc/nonrecursive/library/sublibrary/
slib2.c'
ar r '/tmp/out/library/sublibrary/slib.a' /tmp/out/library/sublibrary/slib1.o /tmp/out/library/
sublibrary/slib2.o
ranlib '/tmp/out/library/sublibrary/slib.a'
cc -c -o '/tmp/out/library/lib1.o' '/home/jgc/doc/nonrecursive/library/lib1.c'
cc -c -o '/tmp/out/library/lib2.o' '/home/jgc/doc/nonrecursive/library/lib2.c'
ar r '/tmp/out/library/lib.a' /tmp/out/library/lib1.o /tmp/out/library/lib2.o
ranlib '/tmp/out/library/lib.a'
cc -c -o '/tmp/out/executable/foo.o' '/home/jgc/doc/nonrecursive/executable/foo.c'
cc -c -o '/tmp/out/executable/bar.o' '/home/jgc/doc/nonrecursive/executable/bar.c'
g++ /tmp/out/executable/foo.o /tmp/out/executable/bar.o /tmp/out/library/lib.a -o'/tmp/out/
executable/exec'
$ make -n clean
rm -rf /tmp/out/library/sublibrary
rm -rf /tmp/out/library
rm -rf /tmp/out/executable

Here, we ask for the sublibrary to be built:

$ cd /src
$ make -n clean-library_sublibrary
rm -rf /tmp/out/library/sublibrary
$ make -n library_sublibrary
cc -c -o '/tmp/out/library/sublibrary/slib1.o' '/home/jgc/doc/nonrecursive/library/sublibrary/
slib1.c'
cc -c -o '/tmp/out/library/sublibrary/slib2.o' '/home/jgc/doc/nonrecursive/library/sublibrary/
slib2.c'
ar r '/tmp/out/library/sublibrary/slib.a' /tmp/out/library/sublibrary/slib1.o /tmp/out/library/
sublibrary/slib2.o
ranlib '/tmp/out/library/sublibrary/slib.a'

And if we ask that the executable module be built, the library gets built
at the same time (and also the sublibrary) because of the dependency:

$ cd /src/executable
$ make -n executable
cc -c -o '/tmp/out/library/sublibrary/slib1.o' '/home/jgc/doc/nonrecursive/library/sublibrary/
slib1.c'
cc -c -o '/tmp/out/library/sublibrary/slib2.o' '/home/jgc/doc/nonrecursive/library/sublibrary/
slib2.c'
ar r '/tmp/out/library/sublibrary/slib.a' /tmp/out/library/sublibrary/slib1.o /tmp/out/library/
sublibrary/slib2.o
ranlib '/tmp/out/library/sublibrary/slib.a'
cc -c -o '/tmp/out/library/lib1.o' '/home/jgc/doc/nonrecursive/library/lib1.c'
cc -c -o '/tmp/out/library/lib2.o' '/home/jgc/doc/nonrecursive/library/lib2.c'
ar r '/tmp/out/library/lib.a' /tmp/out/library/lib1.o /tmp/out/library/lib2.o
ranlib '/tmp/out/library/lib.a'
cc -c -o '/tmp/out/executable/foo.o' '/home/jgc/doc/nonrecursive/executable/foo.c'
cc -c -o '/tmp/out/executable/bar.o' '/home/jgc/doc/nonrecursive/executable/bar.c'
g++ /tmp/out/executable/foo.o /tmp/out/executable/bar.o /tmp/out/library/lib.a -o'/tmp/out/
executable/exec'

Building and Rebuilding 107

Although not as simple to code as a recursive make, this non-recursive
system is very flexible. It allows dependencies between individual binary
files across modules, which is not possible with recursive make, and it allows
this without losing the “go to any directory and type make” notion that engi-
neers know.

GNU make is incredibly powerful (which is partly why it’s still around after
so many years), but when projects become large, makefiles can get unwieldy.
With what you learned in this chapter, you can now simplify makefiles to work
around GNU make’s weaknesses so that large projects are made simpler and
more reliable.

4
P i t f a l l s a n d P r o b l e m s

In this chapter, you’ll learn how to deal
with problems faced by makefile main-

tainers as projects get considerably larger.
Tasks that seem easy with small makefiles

become more difficult with large, sometimes recur-
sive, make processes. As makefiles become more com-
plex, it’s easy to run into problems with edge cases or
sometimes poorly understood behavior of GNU make.

Here you’ll see a complete solution to the “recursive make problem,” how
to overcome GNU make’s problems handling filenames that contain spaces,
how to deal with cross-platform file paths, and more.

110 Chapter 4

GNU make Gotcha: ifndef and ?=
It’s easy to get tripped up by the two ways of checking whether a variable is
defined, ifndef and ?=, because they do similar things, yet one has a decep-
tive name. ifndef doesn’t really test whether a variable is defined; it only
checks that the variable is not empty, whereas ?= does make its decision
based on whether the variable is defined or not.

Compare these two ways of conditionally setting the variable FOO in a
makefile:

ifndef FOO
FOO=New Value
endif

and

FOO ?= New Value

They look like they should do the same thing, and they do, well, almost.

What ?= Does
The ?= operator in GNU make sets the variable mentioned on its left side to
the value on the right side if the left side is not defined. For example:

FOO ?= New Value

This makefile sets FOO to New Value.
But the following one does not:

FOO=Old Value
FOO ?= New Value

Neither does this one (even though FOO was initially empty):

FOO=
FOO ?= New Value

In fact, ?= is the same as the following makefile, which uses the GNU
make $(origin) function to determine whether a variable is undefined:

ifeq ($(origin FOO),undefined)
FOO = New Value
endif

$(origin FOO) will return a string that shows whether and how FOO is
defined. If FOO is undefined, then $(origin FOO) is the string undefined.

Note that variables defined with ?= are expanded, just like variables
defined with the = operator. They are expanded when used but not when
defined, just like a normal GNU make variable.

Pitfalls and Problems 111

What ifndef Does
As mentioned earlier, ifndef tests whether a variable is empty but does not
check to see whether the variable is defined. ifndef means if the variable is
undefined or is defined but is empty. Thus, this:

ifndef FOO
FOO=New Value
endif

will set FOO to the New Value if FOO is undefined or FOO is empty. So ifndef can
be rewritten as such:

ifeq ($(FOO),)
FOO=New Value
endif

because an undefined variable is always treated as having an empty value
when read.

$(shell) and := Go Together
The suggestion in this section often speeds up makefiles with just the addi-
tion of a suitably placed colon. To understand how a single colon can make
such a difference, you need to understand GNU make’s $(shell) function and
the difference between = and :=.

$(shell) Explained
$(shell) is GNU make’s equivalent of the backtick (`) operator in the shell.
It executes a command, flattens the result (turns all whitespace, including
new lines, into spaces), and returns the resulting string.

For example, if you want to get the output of the date command into a
variable called NOW, you write:

NOW = $(shell date)

If you want to count the number of files in the current directory and
get that number into FILE_COUNT, do this:

FILE_COUNT = $(shell ls | wc -l)

Because $(shell) flattens output to get the names of all the files in the
current directory into a variable, the following works:

FILES = $(shell ls)

The newline between files is replaced with a single space, making FILES
a space-separated list of filenames.

112 Chapter 4

It’s common to see an execution of the pwd command to get the current
working directory into a variable (in this case CWD):

CWD = $(shell pwd)

We’ll look at the pwd command later when considering how to optimize
an example makefile that wastes time getting the working directory over
and over again.

The Difference Between = and :=
Ninety-nine percent of the time, you’ll see variable definitions in makefiles
that use the = form, like this:

FOO = foo
BAR = bar
FOOBAR = $(FOO) $(BAR)

all: $(FOOBAR)

u $(FOOBAR):
 @echo $@ $(FOOBAR)

FOO = fooey
BAR = barney

Here, variables FOO, BAR, and FOOBAR are recursively expanded variables. That
means that when the value of a variable is needed, any variables that it ref-
erences are expanded at that point. For example, if the value of $(FOOBAR) is
needed, GNU make gets the value of $(FOO) and $(BAR), puts them together
with the space in between, and returns foo bar. Expansion through as many
levels of variables as necessary is done when the variable is used.

In this makefile FOOBAR has two different values. Running it prints out:

$ make
foo fooey barney
bar fooey barney

The value of FOOBAR is used to define the list of prerequisites to the
all rule and is expanded as foo bar; the same thing happens for the next
rule u, which defines rules for foo and bar.

But when the rules are run, the value of FOOBAR as used in the echo pro-
duces fooey barney. (You can verify that the value of FOOBAR was foo bar when
the rules were defined by looking at the value of $@, the target being built,
when the rules are run).

Keep in mind the following two cases:

•	 When a rule is being defined in a makefile, variables will evaluate to
their value at that point in the makefile.

•	 Variables used in recipes (that is, in the commands) have the final
value: whatever value the variable had at the end of the makefile.

Pitfalls and Problems 113

If the definition of FOOBAR is changed to use a := instead of =, running
the makefile produces a very different result:

$ make
foo foo bar
bar foo bar

Now FOOBAR has the same value everywhere. This is because := forces the
right side of the definition to be expanded at that moment during makefile
parsing. Rather than storing $(FOO) $(BAR) as the definition of FOOBAR, GNU
make stores the expansion of $(FOO) $(BAR), which at that point is foo bar. The
fact that FOO and BAR are redefined later in the makefile is irrelevant; FOOBAR
has already been expanded and set to a fixed string. GNU make refers to
variables defined in this way as simply expanded.

Once a variable has become simply expanded, it remains that way unless
it is redefined using the = operator. This means that when text is appended
to a simply expanded variable, it is expanded before being added to the
variable.

For example, this:

FOO=foo
BAR=bar
BAZ=baz
FOOBAR := $(FOO) $(BAR)
FOOBAR += $(BAZ)
BAZ=bazzy

results in FOOBAR being foo bar baz. If = had been used instead of :=, when
$(BAZ) was appended, it would not have been expanded and the resulting
FOOBAR would have been foo baz bazzy.

The Hidden Cost of =
Take a look at this example makefile:

CWD = $(shell pwd)
SRC_DIR=$(CWD)/src/
OBJ_DIR=$(CWD)/obj/
OBJS = $(OBJ_DIR)foo.o $(OBJ_DIR)bar.o $(OBJ_DIR)baz.o

$(OBJ_DIR)%.o: $(SRC_DIR)%.c ; @echo Make $@ from $<

all: $(OBJS)
 @echo $? $(OBJS)

It gets the current working directory into CWD, defines a source and
object directory as subdirectories of the CWD, defines a set of objects (foo.o,
bar.o, and baz.o) to be built in the OBJ_DIR, sets up a pattern rule showing
how to build a .o from a .c, and finally states that by default the makefile

114 Chapter 4

should build all the objects and print out a list of those that were out of
date ($? is the list of prerequisites of a rule that were out of date) as well as
a full list of objects.

You might be surprised to learn that this makefile ends up making
eight shell invocations just to get the CWD value. Imagine how many times
GNU make would make costly calls to the shell in a real makefile with hun-
dreds or thousands of objects!

So many calls to $(shell) are made because the makefile uses recur-
sively expanded variables: variables whose value is determined when the
variable is used but not at definition time. OBJS references OBJ_DIR three
times, which references CWD each time; every time OBJS is referenced, three
calls are made to $(shell pwd). Any other reference to SRC_DIR or OBJ_DIR (for
example, the pattern rule definition) results in another $(shell pwd).

But a quick fix for this is just to change the definition of CWD to simply
expand by inserting a : to turn = into :=. Because the working directory
doesn’t change during the make, we can safely get it once:

CWD := $(shell pwd)

Now, a single call out to the shell is made to get the working directory.
In a real makefile this could be a huge time-saver.

Because it can be difficult to follow through a makefile to see every-
where a variable is used, you can use a simple trick that will cause make to
print out the exact line at which a variable is expanded. Insert $(warning
Call to shell) in the definition of CWD so that its definition becomes this:

CWD = $(warning Call to shell)$(shell pwd)

Then you get the following output when you run make:

$ make
makefile:8: Call to shell
makefile:8: Call to shell
makefile:10: Call to shell
makefile:10: Call to shell
makefile:10: Call to shell
Make /somedir/obj/foo.o from /somedir/src/foo.c
Make /somedir/obj/bar.o from /somedir/src/bar.c
Make /somedir/obj/baz.o from /somedir/src/baz.c
makefile:11: Call to shell
makefile:11: Call to shell
makefile:11: Call to shell
/somedir/obj/foo.o /somedir/obj/bar.o /somedir/obj/baz.o /somedir/obj/foo.o
/somedir/obj/bar.o /somedir/obj/baz.o

The $(warning) doesn’t change the value of CWD, but it does output a mes-
sage to STDERR. From the output you can see the eight calls to the shell and
which lines in the makefile caused them.

Pitfalls and Problems 115

If CWD is defined using :=, the $(warning) trick verifies that CWD is expanded
only once:

$ make
makefile:1: Call to shell
Make /somedir/obj/foo.o from /somedir/src/foo.c
Make /somedir/obj/bar.o from /somedir/src/bar.c
Make /somedir/obj/baz.o from /somedir/src/baz.c
/somedir/obj/foo.o /somedir/obj/bar.o /somedir/obj/baz.o /somedir/obj/foo.o
/somedir/obj/bar.o /somedir/obj/baz.o

A quick way to determine if a makefile uses the expensive combination
of = and $(shell) is to run the command:

grep -n \$\(shell makefile | grep -v :=

This prints out the line number and details of every line in the makefile
that contains a $(shell) and doesn’t contain a :=.

$(eval) and Variable Caching
In the previous section, you learned how to use := to speed up makefiles by
not repeatedly performing a $(shell). Unfortunately, it can be problematic
to rework makefiles to use := because they may rely on being able to define
variables in any order.

In this section, you’ll learn how to use GNU make’s $(eval) function to
get the benefits of recursively expanded variables using = while getting the
sort of speedup that’s possible with :=.

About $(eval)
$(eval)’s argument is expanded and then parsed as if it were typed in as part
of a makefile. As a result, within a $(eval) (which could be inside a variable
definition) you can programmatically define variables, create rules (explicit
or pattern), include other makefiles, and so on. It’s a powerful function.

Here’s an example:

set = $(eval $1 := $2)

$(call set,FOO,BAR)
$(call set,A,B)

This results in FOO having the value BAR and A having the value B.
Obviously, this example could have been achieved without $(eval), but
it’s easy to see how you can use $(eval) to make programmatic changes
to the definitions in a makefile.

116 Chapter 4

An $(eval) Side Effect
One use of $(eval) is to create side effects. For example, here’s a variable
that is actually an auto-incrementing counter (it uses the arithmetic func-
tions from the GMSL):

include gmsl

c-value := 0
counter = $(c-value)$(eval c-value := $(call plus,$(c-value),1))

Every time counter is used, its value is incremented by one. For example,
the following sequence of $(info) functions outputs numbers in sequence
starting from 0:

$(info Starts at $(counter))
$(info Then it's $(counter))
$(info And then it's $(counter))

Here’s the output:

$ make
Starts at 0
Then it's 1
And then it's 2

You could use a simple side effect like this to find out how often a par-
ticular variable is reevaluated by GNU make. You might be surprised at the
result. For example, when building GNU make, the variable srcdir from its
makefile is accessed 48 times; OBJEXT is accessed 189 times, and that’s in a
very small project.

GNU make wastes time accessing an unchanging variable by looking at
the same string repeatedly. If the variable being accessed is long (such as a
long path) or contains calls to $(shell) or complex GNU make functions, the
performance of variable handling could affect the overall runtime of a make.

That’s especially important if you are trying to minimize build time
by parallelizing the make or if a developer is running an incremental build
requiring just a few files to be rebuilt. In both cases a long startup time by
GNU make could be very inefficient.

Caching Variable Values
GNU make does provide a solution to the problem of reevaluating a variable
over and over again: use := instead of =. A variable defined using := gets its
value set once and for all, the right side is evaluated once, and the result-
ing value is set in the variable. Using := can cause a makefile to be parsed
more quickly because the right side is evaluated only once. But it does

Pitfalls and Problems 117

introduce limitations, so it is rarely used. One limitation is that it requires
variable definitions to be ordered a certain way. For example, if ordered
this way:

FOO := $(BAR)
BAR := bar

the result in FOO would have a totally different value than if it was ordered
this way:

BAR := bar
FOO := $(BAR)

In the first snippet FOO is empty, and in the second FOO is bar.
Contrast that with the simplicity of the following:

FOO = $(BAR)
BAR = bar

Here, FOO is bar. Most makefiles are written in this style, and only very
conscientious (and speed conscious) makefile authors use :=.

On the other hand, almost all of these recursively defined variables
only ever have one value when used. The long evaluation time for a com-
plex recursively defined variable is a convenience for the makefile author.

An ideal solution would be to cache variable values so the flexibility of
the = style is preserved, but the variables are only evaluated once for speed.
Clearly, this would cause a minor loss of flexibility, because a variable can’t
take two different values (which is sometimes handy in a makefile). But for
most uses, it would provide a significant speed boost.

Speed Improvements with Caching
Consider the example makefile in Listing 4-1:

C := 1234567890 ABCDEFGHIJKLMNOPQRSTUVWXYZ
C += $C
C += $C
C += $C
C += $C
C += $C
C += $C
C += $C
C += $C
C += $C
C += $C
C += $C

FOO = $(subst 9,NINE,$C)$(subst 8,EIGHT,$C)$(subst 7,SEVEN,$C) \
$(subst 6,SIX,$C)$(subst 5,FIVE,$C)$(subst 4,FOUR,$C) \
$(subst 3,THREE,$C)$(subst 2,TWO,$C)$(subst 1,ONE,$C)
_DUMMY := $(FOO)

118 Chapter 4

--snip--

.PHONY: all
all:

Listing 4-1: In this makefile, FOO and C are uselessly evaluated over and over again.

It defines a variable C, which is a long string (it’s actually 1234567890
repeated 2,048 times followed by the alphabet repeated 2,048 times plus
spaces for a total of 77,824 characters). Here := is used so that C is created
quickly. C is designed to emulate the sort of long strings that are generated
within makefiles (for example, long lists of source files with paths).

Then a variable FOO is defined that manipulates C using the built-in
$(subst) function. FOO emulates the sort of manipulation that occurs within
makefiles (such as changing filename extensions from .c to .o).

Finally, $(FOO) is evaluated 200 times to emulate the use of FOO in a
small but realistically sized makefile. The makefile does nothing; there’s a
dummy, empty all rule at the end.

On my laptop, using GNU make 3.81, this makefile takes about 3.1 sec-
onds to run. That’s a long time spent repeatedly manipulating C and FOO but
not doing any actual building.

Using the counter trick from “An $(eval) Side Effect” on page 116, you
can figure out how many times FOO and C are evaluated in this makefile. FOO
was evaluated 200 times and C 1600 times. It’s amazing how fast these evalu-
ations can add up.

But the values of C and FOO need to be calculated only once, because
they don’t change. Let’s say you alter the definition of FOO to use :=:

FOO := $(subst 9,NINE,$C)$(subst 8,EIGHT,$C)$(subst 7,SEVEN,$C) \
$(subst 6,SIX,$C)$(subst 5,FIVE,$C)$(subst 4,FOUR,$C) \
$(subst 3,THREE,$C)$(subst 2,TWO,$C)$(subst 1,ONE,$C)

This drops the runtime to 1.8 seconds, C is evaluated nine times, and
FOO is evaluated just once. But, of course, that requires using := with all its
problems.

A Caching Function
An alternative caching function is this simple caching scheme:

cache = $(if $(cached-$1),,$(eval cached-$1 := 1)$(eval cache-$1 := $($1)))$(cache-$1)

First, a function called cache is defined, which automatically caches a
variable’s value the first time it is evaluated and retrieves it from the cache
for each subsequent attempt to retrieve it.

cache uses two variables to store the cached value of a variable (when
caching variable A, the cached value is stored in cache-A) and whether the
variable has been cached (when caching variable A, the has been cached flag
is cached-A).

Pitfalls and Problems 119

First, it checks to see whether the variable has been cached; if it has,
the $(if) does nothing. If it hasn’t, the cached flag is set for that variable
in the first $(eval) and then the value of the variable is expanded (notice
the $($1), which gets the name of the variable and then gets its value) and
cached. Finally, cache returns the value from cache.

To update the makefile, simply turn any reference to a variable into a
call to the cache function. For example, you can modify the makefile from
Listing 4-1 by changing all occurrences of $(FOO) to $(call cache,FOO) using
a simple find and replace. The result is shown in Listing 4-2.

C := 1234567890 ABCDEFGHIJKLMNOPQRSTUVWXYZ
C += $C
C += $C
C += $C
C += $C
C += $C
C += $C
C += $C
C += $C
C += $C
C += $C
C += $C

FOO = $(subst 9,NINE,$C)$(subst 8,EIGHT,$C)$(subst 7,SEVEN,$C) \
$(subst 6,SIX,$C)$(subst 5,FIVE,$C)$(subst 4,FOUR,$C) \
$(subst 3,THREE,$C)$(subst 2,TWO,$C)$(subst 1,ONE,$C)

_DUMMY := $(call cache,FOO)
--snip--

.PHONY: all
all:

Listing 4-2: A modified version of Listing 4-1 that uses the cache function

Running this on my machine shows that there’s now one access of FOO,
the same nine accesses of C, and a runtime of 2.4 seconds. It’s not as fast
as the := version (which took 1.8 seconds), but it’s still 24 percent faster. On
a big makefile, this technique could make a real difference.

Wrapping Up
The fastest way to handle variables is to use := whenever you can, but it
requires care and attention, and is probably best done only in a new make-
file (just imagine trying to go back and reengineer an existing makefile to
use :=).

If you’re stuck with =, the cache function presented here can give you a
speed boost that developers doing incremental short builds will especially
appreciate.

120 Chapter 4

If it’s only necessary to change a single variable definition, it’s possible
to eliminate the cache function. For example, here’s the definition of FOO
changed to magically switch from being recursively defined to a simple
definition:

FOO = $(eval FOO := $(subst 9,NINE,$C)$(subst 8,EIGHT,$C)$(subst 7,SEVEN,$C) \
$(subst 6,SIX,$C)$(subst 5,FIVE,$C)$(subst 4,FOUR,$C)$(subst 3,THREE,$C) \
$(subst 2,TWO,$C)$(subst 1,ONE,$C))$(value FOO)

The first time $(FOO) is referenced, the $(eval) happens, turning FOO
from a recursively defined variable to a simple definition (using :=). The
$(value FOO) at the end returns the value stored in FOO, making this process
transparent.

The Trouble with Hidden Targets
Take a look at the makefile in Listing 4-3:

.PHONY: all
all: foo foo.o foo.c

foo:
 touch $@ foo.c

%.o: %.c
 touch $@

Listing 4-3: In this makefile, the rule to make foo also makes foo.c.

It contains a nasty trap for the unwary that can cause make to report odd
errors, stop the -n option from working, and prevent a speedy parallel make.
It can even cause GNU make to do the wrong work and update an up-to-
date file.

On the face of it this makefile looks pretty simple. If you run it through
GNU make, it’ll build foo (which creates the files foo and foo.c) and then use
the pattern at the bottom to make foo.o from foo.c. It ends up running the
following commands:

touch foo foo.c
touch foo.o

But there’s a fatal flaw. Nowhere does this makefile mention that the
rule to make foo actually also makes foo.c. So foo.c is a hidden target, a file
that was built but that GNU make is unaware of, and hidden targets cause
an endless number of problems.

GNU make is very good at keeping track of targets, files that need to be
built, and the dependencies between targets. But the make program is only
as good as its inputs. If you don’t tell make about a relationship between

Pitfalls and Problems 121

two files, it won’t discover it on its own and it’ll make mistakes because it
assumes it has perfect knowledge about the files and their relationships.

In this example, make only works because it builds the prerequisites of
all from left to right. First it encounters foo, which it builds, creating foo.c
as a side effect, and then it builds foo.o using the pattern. If you change the
order of the prerequisites of all so that it doesn’t build foo first, the build
will fail.

There are (at least!) five nasty side effects of hidden targets.

An Unexpected Error if the Hidden Target Is Missing
Suppose that foo exists, but foo.c and foo.o are missing:

$ rm -f foo.c foo.o
$ touch foo
$ make
No rule to make target `foo.c', needed by `foo.o'.

make tries to update foo.o, but because it doesn’t know how to make foo.c
(because it’s not mentioned as the target of any rule), invoking GNU make
results in an error.

The -n Option Fails
The helpful -n debugging option in GNU make tells it to print out the com-
mands that it would run to perform the build without actually running them:

$ make -n
touch foo foo.c
No rule to make target `foo.c', needed by `foo.o'.

You’ve seen that make would actually perform two touch commands
(touch foo foo.c followed by touch foo.o), but doing a make -n (with no foo*
files present) results in an error. make doesn’t know that the rule for foo
makes foo.c, and because it hasn’t actually run the touch command, foo.c
is missing. Thus, the -n doesn’t represent the actual commands that make
would run, making it useless for debugging.

You Can’t Parallelize make
GNU make provides a handy feature that allows it to run multiple jobs at once.
If you have many compiles in a build, specifying the -j option (followed by
a number indicating the number of jobs to run at the same time) can maxi-
mize CPU utilization and shorten the build.

Unfortunately, a hidden target spoils that plan. Here’s the output
from make -j3 running three jobs at once on our example makefile from
Listing 4-3:

$ make -j3
touch foo foo.c

122 Chapter 4

No rule to make target `foo.c', needed by `foo.o'.
Waiting for unfinished jobs....

GNU make tried to build foo, foo.o, and foo.c at the same time, and
discovered that it didn’t know how to build foo.c because it had no way
of knowing that it should wait for foo to be made.

make Does the Wrong Work if the Hidden Target Is Updated
Suppose the file foo.c already exists when make is run. Because make doesn’t
know that the rule for foo will mess with foo.c, it’ll get updated even though
it’s up-to-date. In Listing 4-2, foo.c is altered by a benign touch operation
that only alters the file’s timestamp, but a different operation could destroy
or overwrite the contents of the file:

$ touch foo.c
$ rm -f foo foo.o
$ make
touch foo foo.c
touch foo.o

make rebuilds foo because it’s missing and updates foo.c at the same
time, even though it was apparently up-to-date.

You Can’t Direct make to Build foo.o
You’d hope that typing make foo.o would result in GNU make building foo.o
from foo.c and, if necessary, building foo.c. But make doesn’t know how to
build foo.c. That just happens by accident when building foo:

$ rm -f foo.c
$ make foo.o
No rule to make target `foo.c', needed by `foo.o'.

So if foo.c is missing, make foo.o results in an error.
Hopefully, you’re now convinced that hidden targets are a bad idea and

can lead to all sorts of build problems.

GNU make’s Escaping Rules
Sometimes you’ll need to insert a special character in a makefile. Perhaps you
need a newline inside an $(error) message, a space character in a $(subst),
or a comma as the argument to a GNU make function. Those three simple
tasks can be frustratingly difficult to do in GNU make; this section takes you
through simple syntax that eliminates the frustration.

GNU make’s use of the tab character at the start of any line containing
commands is a notorious language feature, but some other special charac-
ters can also trip you up. The ways GNU make handles $, %, ?, *, [, ~, \, and #
are all special.

Pitfalls and Problems 123

Dealing with $
Every GNU make user is familiar with $ for starting a variable reference. It’s
possible to write $(variable) (with parentheses) or ${variable} (with curly
brackets) to get the value of variable, and if the variable name is a single
character (such as a), you can drop the parentheses and just use $a.

To get a literal $, you write $$. So to define a variable containing a single
$ symbol you’d write: dollar := $$.

Playing with %
Escaping % is not as simple as $, but it needs to be done in only three
situations, and the same rules apply for each: in the vpath directive, in a
$(patsubst), and in a pattern or static-pattern rule.

The three rules for % escaping are:

•	 You can escape % with a single \ character (that is, \% becomes a literal %).

•	 If you need to put a literal \ in front of a % (that is, you want the \ to not
escape the %), escape it with \ (in other words, \\% becomes a literal \
followed by a % character that will be used for the pattern match).

•	 Don’t worry about escaping \ anywhere else in a pattern. It will be
treated as a literal. For example, \hello is \hello.

Wildcards and Paths
The symbols ?, *, [, and] get treated specially when they appear in a file-
name. A makefile that has

*.c:
 @command

will actually search for all .c files in the current directory and define a
rule for each. The targets (along with prerequisites and files mentioned
in the include directive) are globbed (the filesystem is searched and file-
names matched against the wildcard characters) if they contain a wild-
card character. The globbing characters have the same meaning as in the
Bourne shell.

The ~ character is also handled specially in filenames and is expanded
to the home directory of the current user.

All of those special filename characters can be escaped with a \. For
example:

*.c:
 @command

This makefile defines a rule for the file named (literally) *.c.

124 Chapter 4

Continuations
Other than the escaping function, you can also use the \ as a continuation
character at the end of a line:

all: \
prerequisite \
something else
 @command

Here, the rule for all has three prerequisites: prerequisite, something,
and else.

Comments
You can use the # character to start a comment, and you can make it a literal
with a \ escape:

pound := \#

Here, $(pound) is a single character: #.

I Just Want a Newline!
GNU make does its best to insulate you from the newline character. You can’t
escape a newline—there’s no syntax for special characters (for example,
you can’t write \n), and even the $(shell) function strips newlines from the
returned value.

But you can define a variable that contains a newline using the define
syntax:

define newline

endef

Note that this definition contains two blank lines, but using $(newline)
will expand into only one newline, which can be useful for formatting error
messages nicely:

$(error This is an error message$(newline)with two lines)

Because of GNU make’s rather liberal variable naming rules, it’s possible
to define a variable called \n. So if you like to maintain a familiar look, you
can do this:

define \n

endef

$(error This is an error message $(\n)with two lines)

Pitfalls and Problems 125

We’ll look more at special variable names in the next section.

Function Arguments: Spaces and Commas
A problem that many GNU make users run into is the handling of spaces and
commas in GNU make function arguments. Consider the following use of
$(subst):

spaces-to-commas = $(subst ,,,$1)

This takes three arguments separated by commas: the from text, the to
text, and the string to change.

It defines a function called spaces-to-commas to convert all spaces in its
argument to commas (which might be handy for making a CSV file for
example). Unfortunately, it doesn’t work for two reasons:

•	 The first argument of the $(subst) is a space. GNU make strips all leading
and trailing whitespace around function arguments. In this case, the
first argument is interpreted as an empty string.

•	 The second argument is a comma. GNU make cannot distinguish
between the commas used for argument separators and the comma
as an argument. In addition, there’s no way to escape the comma.

You can work around both issues if you know that GNU make does the
whitespace stripping and separation of arguments before it does any expan-
sion of the arguments. So if we can define a variable containing a space
and a variable containing a comma, we can write the following to get the
desired effect:

spaces-to-commas = $(subst $(space),$(comma),$1)

Defining a variable containing a comma is easy, as shown here:

comma := ,

But space is a bit harder. You can define a space in a couple of ways. One
way is to use the fact that whenever you append to a variable (using +=), a
space is inserted before the appended text:

space :=
space +=

Another way is to first define a variable that contains nothing, and then
use it to surround the space so that it doesn’t get stripped by GNU make:

blank :=
space := $(blank) $(blank)

126 Chapter 4

You can also use this technique to get a literal tab character into a variable:

blank :=
tab := $(blank)$(blank)

Much in the way that $(\n) was defined in the previous section, it’s pos-
sible to define specially named space and comma variables. GNU make’s
rules are liberal enough to allow us to do this:

, := ,

blank :=
space := $(blank) $(blank)
$(space) := $(space)

The first line defines a variable called , (which can be used as $(,) or
even $,) containing a comma.

The last three lines define a variable called space containing a space
character and then use it to define a variable named (that’s right, its name
is a space character) containing a space.

With that definition it’s possible to write $() or even $ (there’s a space
after that $) to get a space character. Note that doing this might cause prob-
lems in the future as make is updated, so playing tricks like this can be dan-
gerous. If you’re averse to risks, just use the variable named space and avoid
$(). Because whitespace is special in GNU make, pushing make’s parser to the
limit with tricks like $() might lead to breakages.

Using those definitions, the spaces-to-commas function can be written as:

spaces-to-commas = $(subst $(),$(,),$1)

This strange-looking definition replaces spaces with commas using
subst. It works because the $() will get expanded by subst and will itself be
a space. That space will then be the first parameter (the string that will be
replaced). The second parameter is $(,), which, when expanded, becomes
a ,. The result is that spaces-to-commas turns spaces into commas without
confusing GNU make with the actual space and comma characters.

The Twilight Zone
It’s possible to take definitions like $() and $(\n) and go much further,
defining variables with names like =, # or :. Here are other interesting vari-
able definitions:

Define the $= or $(=) variable which has the value =
equals := =
$(equals) := =

Define the $# or $(#) variable which has the value
hash := \#
$(hash) := \#

Pitfalls and Problems 127

Define the $: or $(:) variable which has the value :
colon := :
$(colon) := :

Define the $($$) variable which has the value $
dollar := $$
$(dollar) := $$

These definitions probably aren’t useful, but if you want to push GNU
make syntax to its limits, try this:

+:=+

Yes, that defines a variable called + containing a +.

The Trouble with $(wildcard)
The function $(wildcard) is GNU make’s globbing function. It’s a useful way
of getting a list of files inside a makefile, but it can behave in unexpected
ways. It doesn’t always provide the same answer as running ls. Read on to
find out why and what to do about it.

$(wildcard) Explained
You can use $(wildcard) anywhere in a makefile or rule to get a list of files
that match one or more glob style patterns. For example, $(wildcard *.foo)
returns a list of files ending in .foo. Recall that a list is a string where list ele-
ments are separated by spaces, so $(wildcard *.foo) might return a.foo b.foo
c.foo. (If a filename contains a space, the returned list may appear incorrect
because there’s no way to spot the difference between the list separator—a
space—and the space in a filename.)

You can also call $(wildcard) with a list of patterns, so $(wildcard *.foo
*.bar) returns all the files ending in .foo or .bar. The $(wildcard) function
supports the following globbing operators: * (match 0 or more characters),
? (match 1 character), and [...] (matches characters, [123], or a range of
characters, [a-z]).

Another useful feature of $(wildcard) is that if the filename passed to it
does not contain a pattern, that file is simply checked for existence. If the
file exists, its name is returned; otherwise, $(wildcard) returns an empty
string. Thus, $(wildcard) can be combined with $(if) to create an if-exists
function:

if-exists = $(if ($wildcard $1),$2,$3)

128 Chapter 4

if-exists has three parameters: the name of the filename to check for,
what to do if the file exists, and what to do if it does not. Here’s a simple
example of its use:

$(info a.foo is $(call if-exists,a.foo,there,not there))

This will print a.foo is there if a.foo exists, or it will print a.foo is not
there if not.

Unexpected Results
Each of the following examples uses two variables to obtain a list of files end-
ing in .foo in a particular directory: WILDCARD_LIST and LS_LIST each return the
list of files ending in .foo by calling $(wildcard) and $(shell ls), respectively.
The variable DIRECTORY holds the directory in which the examples look for
files; for the current directory, DIRECTORY is left empty.

The starting makefile looks like this:

WILDCARD_LIST = wildcard returned \'$(wildcard $(DIRECTORY)*.foo)\'
LS_LIST = ls returned \'$(shell ls $(DIRECTORY)*.foo)\'

.PHONY: all
all:
 @echo $(WILDCARD_LIST)
 @echo $(LS_LIST)

With a single file a.foo in the current directory, running GNU make
results in this:

$ touch a.foo
$ make
wildcard returned 'a.foo'
ls returned 'a.foo'

Now extend the makefile so it makes a file called b.foo using touch. The
makefile should look like Listing 4-4:

WILDCARD_LIST = wildcard returned \'$(wildcard $(DIRECTORY)*.foo)\'
LS_LIST = ls returned \'$(shell ls $(DIRECTORY)*.foo)\'

.PHONY: all
all: b.foo
 @echo $(WILDCARD_LIST)
 @echo $(LS_LIST)

b.foo:
 @touch $@

Listing 4-4: When you run this makefile, ls and $(wildcard) return different results.

Pitfalls and Problems 129

Running this makefile through GNU make (with just the preexisting
a.foo file) results in the following surprising output:

$ touch a.foo
$ make
wildcard returned 'a.foo'
ls returned 'a.foo b.foo'

The ls returns the correct list (because b.foo has been created by the
time the all rule runs), but $(wildcard) does not; $(wildcard) appears to be
showing the state before b.foo was created.

Working with the .foo files in a subdirectory (not in the current work-
ing directory) results in different output, as shown in Listing 4-5.

DIRECTORY=subdir/

.PHONY: all
all: $(DIRECTORY)b.foo
 @echo $(WILDCARD_LIST)
 @echo $(LS_LIST)

$(DIRECTORY)b.foo:
 @touch $@

Listing 4-5: This time, ls and $(wildcard) return the same results.

Here, the makefile is updated so that it uses the DIRECTORY variable to
specify the subdirectory subdir. There’s a single preexisting file subdir/a.foo,
and the makefile will create subdir/b.foo.

Running this makefile results in:

$ touch subdir/a.foo
$ make
wildcard returned 'subdir/a.foo subdir/b.foo'
ls returned 'subdir/a.foo subdir/b.foo'

Here, both $(wildcard) and ls return the same results, and both show
the presence of the two .foo files: subdir/a.foo, which existed before make was
run, and subdir/b.foo, which was created by the makefile.

Let’s look at one final makefile (Listing 4-6) before I explain what’s
happening:

DIRECTORY=subdir/

$(warning Preexisting file: $(WILDCARD_LIST))

.PHONY: all
all: $(DIRECTORY)b.foo
 @echo $(WILDCARD_LIST)
 @echo $(LS_LIST)

130 Chapter 4

$(DIRECTORY)b.foo:
 @touch $@

Listing 4-6: A small change makes ls and $(wildcard) return different results.

In this makefile, $(warning) is used to print out a list of the .foo files that
already exist in the subdirectory.

Here’s the output:

$ touch subdir/a.foo
$ make
makefile:6: Preexisting file: wildcard returned 'subdir/a.foo'
wildcard returned 'subdir/a.foo'
ls returned 'subdir/a.foo subdir/b.foo'

Notice now that GNU make appears to be behaving like it does in List
ing 4-4; the subdir/b.foo file that was made by the makefile is invisible to
$(wildcard) and doesn’t appear, even though it was created and ls found it.

Unexpected Results Explained
We get unexpected, and apparently inconsistent, results because GNU make
contains its own cache of directory entries. $(wildcard) reads from that cache
(not directly from disk like ls) to get its results. Knowing when that cache is
filled is vital to understanding the results the $(wildcard) will return.

GNU make fills the cache only when it is forced to (for example, when it
needs to read the directory entries to satisfy a $(wildcard) or other globbing
request). If you know that GNU make fills the cache only when needed, then
it’s possible to explain the results.

In Listing 4-4, GNU make fills the cache for the current working directory
when it starts. So the file b.foo doesn’t appear in the output of $(wildcard)
because it wasn’t present when the cache was filled.

In Listing 4-5, GNU make didn’t fill the cache with entries from subdir
until they were needed. The entries were first needed for the $(wildcard),
which is performed after subdir/b.foo is created; hence, subdir/b.foo does
appear in the $(wildcard) output.

In Listing 4-6, the $(warning) happens at the start of the makefile and
fills the cache (because it did a $(wildcard)); hence, subdir/b.foo was missing
from the output of $(wildcard) for the duration of that make.

Predicting when the cache will be filled is very difficult. $(wildcard)
will fill the cache, but so will use of a globbing operator like * in the target
or prerequisite list of a rule. Listing 4-7 is a makefile that builds two files
(subdir/b.foo and subdir/c.foo) and does a couple of $(wildcard)s:

DIRECTORY=subdir/

.PHONY: all
all: $(DIRECTORY)b.foo
 @echo $(WILDCARD_LIST)
 @echo $(LS_LIST)

Pitfalls and Problems 131

$(DIRECTORY)b.foo: $(DIRECTORY)c.foo
 @touch $@
 @echo $(WILDCARD_LIST)
 @echo $(LS_LIST)

$(DIRECTORY)c.foo:
 @touch $@

Listing 4-7: When GNU make fills, the $(wildcard) cache can be difficult to understand.

The output may surprise you:

$ make
wildcard returned 'subdir/a.foo subdir/c.foo'
ls returned 'subdir/a.foo subdir/c.foo'

u wildcard returned 'subdir/a.foo subdir/c.foo'
ls returned 'subdir/a.foo subdir/b.foo subdir/c.foo'

Even though the first $(wildcard) is being done in the rule that makes
subdir/b.foo and after the touch that created subdir/b.foo, there’s no men-
tion of subdir/b.foo in the output of $(wildcard) u. Nor is there mention of
subdir/b.foo in the output of the ls.

The reason is that the complete block of commands is expanded into its
final form before any of the lines in the rule are run. So the $(wildcard) and
$(shell ls) are done before the touch has run.

The output of $(wildcard) is even more unpredictable if the make is run
in parallel with the -j switch. In that case, the exact order in which the
rules are run is not predictable, so the output of $(wildcard) can be even less
predictable.

Here’s what I recommend: don’t use $(wildcard) in a rule; use $(wildcard)
in the makefile only at parsing time (before any rules start running). If you
restrict the use of $(wildcard) to parsing time, you can be assured of consis-
tent results: $(wildcard) will show the state of the filesystem before GNU make
was run.

Making Directories
One common problem faced by real-world makefile hackers is the need
to build a hierarchy of directories before the build, or at least before com-
mands that use those directories can run. The most common case is that
the makefile hacker wants to ensure that the directories where object files
will be created exist, and they want that to happen automatically. This sec-
tion looks at a variety of ways to achieve directory creation in GNU make and
points out a common trap for the unwary.

132 Chapter 4

An Example Makefile
The following makefile builds an object file /out/foo.o from foo.c using the
GNU make built-in variable COMPILE.C to make a .o file from a .c by running
the compiler.

foo.c is in the same directory as the makefile, but foo.o is placed
in /out/:

.PHONY: all
all: /out/foo.o

/out/foo.o: foo.c
 @$(COMPILE.C) -o $@ $<

This example works fine as long as /out/ exists. But if it does not, you’ll
get an error from the compiler along the lines of:

$ make
Assembler messages:
FATAL: can't create /out/foo.o: No such file or directory
make: *** [/out/foo.o] Error 1

Obviously, what you want is for the makefile to automatically create
/out/ if it is missing.

What Not to Do
Because GNU make excels at making things that don’t exist, it seems obvi-
ous to make /out/ a prerequisite of /out/foo.o and have a rule to make the
directory. That way if we need to build /out/foo.o, the directory will get
created.

Listing 4-8 shows the reworked makefile with the directory as a prereq-
uisite and a rule to build the directory using mkdir.

OUT = /out

.PHONY: all
all: $(OUT)/foo.o

$(OUT)/foo.o: foo.c $(OUT)/
 @$(COMPILE.C) -o $@ $<

$(OUT)/:
 mkdir -p $@

Listing 4-8: This makefile can end up doing unnecessary work.

Pitfalls and Problems 133

For simplification, the name of the output directory is stored in a vari-
able called OUT, and the -p option on the mkdir command is used so that
it will build all the necessary parent directories. In this case the path is
simple: it’s just /out/, but -p means that mkdir could make a long chain of
directories in one go.

This works well for this basic example, but there’s a major problem.
Because the timestamp on a directory is typically updated when the direc-
tory is updated (for example, when a file is created, deleted, or renamed),
this makefile can end up doing too much work.

For example, just creating another file inside /out/ forces a rebuild of
/out/foo.o. In a complex example, this could mean that many object files are
rebuilt for no good reason, just because other files were rebuilt in the same
directory.

Solution 1: Build the Directory When the Makefile Is Parsed
A simple solution to the problem in Listing 4-8 is to just create the directory
when the makefile is parsed. A quick call to $(shell) can achieve that:

OUT = /out

.PHONY: all
all: $(OUT)/foo.o

$(OUT)/foo.o: foo.c
 @$(COMPILE.C) -o $@ $<

$(shell mkdir -p $(OUT))

Before any targets are created or commands run, the makefile is read
and parsed. If you put $(shell mkdir -p $(OUT)) somewhere in the makefile,
GNU make will run the mkdir every time the makefile is loaded.

One possible disadvantage is that if many directories need to be
created, this process could be slow. And GNU make is doing unnecessary
work, because it will attempt to build the directories every time you type
make. Some users also don’t like this method because it creates all the direc-
tories, even if they’re not actually used by the rules in the makefile.

A small improvement can be made by first testing to see whether the
directory exists:

ifeq ($(wildcard $(OUT)/.),)
$(shell mkdir -p $(OUT))
endif

Here, $(wildcard) is used with a /. appended to check for the presence
of a directory. If the directory is missing, $(wildcard) will return an empty
string and the $(shell) will be executed.

134 Chapter 4

Solution 2: Build the Directory When all Is Built
A related solution is to build the directory only when all is being built.
This means that the directories won’t get created every time the makefile
is parsed (which could avoid unnecessary work when you type make clean or
make depend):

OUT = /out

.PHONY: all
all: make_directories $(OUT)/foo.o

$(OUT)/foo.o: foo.c
 @$(COMPILE.C) -o $@ $<

.PHONY: make_directories
make_directories: $(OUT)/

$(OUT)/:
 mkdir -p $@

This solution is messy because you must specify make_directories as a
prerequisite of any target that the user might specify after make. If you don’t,
you could run into the situation in which the directories have not been
built. You should avoid this technique, especially because it will completely
break parallel builds.

Solution 3: Use a Directory Marker File
If you look back at Listing 4-8, you’ll notice one rather nice feature: it
builds only the directory needed for a specific target. In a more complex
example (where there were many such directories to be built) it would be
nice to be able to use something like that solution while avoiding the prob-
lem of constant rebuilds as the timestamp on the directory changes.

To do that, you can store a special empty file, which I call a marker file,
in the directory and use that as the prerequisite. Because it’s a normal file,
normal GNU make rebuilding rules apply and its timestamp is not affected
by changes in its directory.

If you add a rule to build the marker file (and to ensure that its direc-
tory exists), you can specify a directory as a prerequisite by specifying the
marker file as a proxy for the directory.

In our example, the marker file is called .f:

OUT = /out
.PHONY: all
all: $(OUT)/foo.o

$(OUT)/foo.o: foo.c $(OUT)/.f
 @$(COMPILE.C) -o $@ $<

Pitfalls and Problems 135

$(OUT)/.f:
 mkdir -p $(dir $@)
 touch $@

Notice how the rule to build $(OUT)/.f creates the directory, if neces-
sary, and touches the .f file. Because the target is a file (.f), it can safely be
used as a prerequisite in the $(OUT)/foo.o rule.

The $(OUT)/.f rule uses the GNU make function $(dir FILE) to extract the
directory portion of the target (which is the path to the .f file) and passes
that directory to mkdir.

The only disadvantage here is that it’s necessary to specify the .f files
for every rule that builds a target in a directory that might need to be created.

To make this easy to use, you can create functions that automatically
make the rule to create a directory and that calculate the correct name for
.f files:

marker = $1.f
make_dir = $(eval $1.f: ; @mkdir -p $$(dir $$@) ; touch $$@)

OUT = /out
.PHONY: all
all: $(OUT)/foo.o

$(OUT)/foo.o: foo.c $(call marker,$(OUT))
 @$(COMPILE.C) -o $@ $<

$(call make-dir,$(OUT))

Here, marker and make-dir are used to simplify the makefile.

Solution 4: Use an Order-Only Prerequisite to Build the Directory
In GNU make 3.80 and later, another solution is to use an order-only prerequi-
site. An order-only prerequisite is built before the target as normal but does
not cause the target to be rebuilt when the prerequisite is changed. Usually,
when a prerequisite is rebuilt, the target will also be rebuilt because GNU
make assumes that the target depends on the prerequisite. Order-only pre-
requisites are different: they get built before the target, but the target isn’t
updated just because an order-only prerequisite was built.

This is exactly what we would’ve liked in the original broken example
in Listing 4-8—to make sure that the directory gets rebuilt as needed but
doesn’t rebuild the .o file every time the directory’s timestamp changes.

Order-only prerequisites are any prerequisites that come after the bar
symbol | and must be placed after any normal prerequisites.

In fact, just adding this single character to the broken example in
Listing 4-8 can make it work correctly:

OUT = /out

.PHONY: all
all: $(OUT)/foo.o

136 Chapter 4

$(OUT)/foo.o: foo.c | $(OUT)/
 @$(COMPILE.C) -o $@ $<

u $(OUT)/:
 mkdir -p $@

The rule for $(OUT)/ u will be run if the directory is missing, but changes
to the directory will not cause $(OUT)/foo.o to be rebuilt.

Solution 5: Use Pattern Rules, Second Expansion, and a Marker File
In a typical makefile (not simple examples in books like this), targets are
usually built using pattern rules, like so:

OUT = /out
.PHONY: all
all: $(OUT)/foo.o

$(OUT)/%.o: %.c
 @$(COMPILE.C) -o $@ $<

But we can change this pattern rule to build directories automatically
using marker files.

In GNU make 3.81 and later, there is an exciting feature called second
expansion (which is enabled by specifying the .SECONDEXPANSION target in the
makefile). With second expansion, the prerequisite list of any rule under-
goes a second expansion (the first expansion happens when the makefile is
read) just before the rule is used. By escaping any $ signs with a second $,
it’s possible to use GNU make automatic variables (such as $@) in the prereq-
uisite list.

Using a marker file for each directory and second expansion, you can
create a makefile that automatically creates directories only when necessary
with a simple addition to the prerequisite list of any rule:

OUT = /tmp/out

.SECONDEXPANSION:

all: $(OUT)/foo.o

$(OUT)/%.o: %.c $$(@D)/.f
 @$(COMPILE.C) -o $@ $<

%/.f:
 mkdir -p $(dir $@)
 touch $@

.PRECIOUS: %/.f

Pitfalls and Problems 137

The pattern rule used to make .o files has a special prerequisite $$(@D)/.f,
which uses the second expansion feature to obtain the directory in which
the target is to be built. It does this by applying the D modifier to $@, which
gets the directory of the target (while $@ on its own obtains the name of the
target).

That directory will be built by the %/.f pattern rule in the process of
building a .f file. Notice that the .f files are marked as precious so that GNU
make will not delete them. Without this line, the .f files are considered to be
useless intermediate files and would be cleaned up by GNU make on exit.

Solution 6: Make the Directory in Line
It’s also possible to make directories inside the rules that need them; this is
called making directories in line. For example:

OUT = /out

.PHONY: all
all: $(OUT)/foo.o

$(OUT)/foo.o: foo.c
 mkdir -p $(@D)
 @$(COMPILE.C) -o $@ $<

Here I’ve modified the $(OUT)/foo.o rule so that it makes the direc-
tory using -p each time. This only works if a small number of rules need
to create directories. Updating every rule to add the mkdir is laborious and
likely to result in some rules being missed.

GNU make Meets Filenames with Spaces
GNU make treats the space character as a list separator; any string contain-
ing spaces can be thought of as a list of space-delimited words. This is fun-
damental to GNU make, and space-separated lists abound. Unfortunately,
that presents a problem when filenames contain spaces. This section looks
at how to work around the “spaces in filenames problem.”

An Example Makefile
Suppose you are faced with creating a makefile that needs to deal with two
files named foo bar and bar baz, with foo bar built from bar baz. Filenames
that include spaces can be tricky to work with.

A naive way to write this in a makefile would be:

foo bar: bar baz
 @echo Making $@ from $<

138 Chapter 4

But that doesn’t work. GNU make can’t differentiate between cases where
spaces are part of the filename and cases where they’re not. In fact, the
naively written makefile is exactly the same as:

foo: bar baz
 @echo Making $@ from $<
bar: bar baz
 @echo Making $@ from $<

Placing quotations marks around the filenames doesn’t work either. If
you try this:

"foo bar": "bar baz"
 @echo Making $@ from $<

GNU make thinks you’re talking about four files called "foo, bar", "bar,
and baz". GNU make ignores the double quotes and splits the list by spaces as
it normally would.

Escape Spaces with \
One way to deal with the spaces problem is to use GNU make’s escaping
operator, \, which you can use to escape sensitive characters (such as a lit-
eral # so that it doesn’t start a comment or a literal % so that it isn’t used as
a wildcard).

Thus, use \ to escape spaces in rules for filenames with spaces. Our
example makefile can then be rewritten as follows:

foo\ bar: bar\ baz
 @echo Making $@ from $<

and it will work correctly. The \ is removed during the parsing of the make-
file, so the actual target and prerequisite names correctly contain spaces.
This will be reflected in the automatic variables (such as $@).

When foo bar needs updating, the simple makefile will output:

$ make
Making foo bar from bar baz

You can also use the same escaping mechanism inside GNU make’s
$(wildcard) function. To check for the existence of foo bar, you can use
$(wildcard foo\ bar) and GNU make will treat foo bar as a single filename to
look for in the filesystem.

Unfortunately, GNU make’s other functions that deal with space-separated
lists do not respect the escaping of spaces. The output of $(sort foo\ bar)
for example, is the list bar foo\, not foo\ bar as you might expect. In fact,
$(wildcard) is the only GNU make function that respects the \ character to
escape a space.

Pitfalls and Problems 139

This leads to a problem if you have to deal with the automatic vari-
ables that contain lists of targets. Consider this slightly more complicated
example:

foo\ bar: bar\ baz a\ b
 @echo Making $@ from $<

Now foo bar has two prerequisites bar baz and a b. What’s the value of
$^ (the list of all prerequisites) in this case? It’s bar baz a b: the escaping is
gone, and even if it weren’t gone, the fact that only $(wildcard) respects the \
means that it would be useless. $^ is, from GNU make’s perspective, a list with
four elements.

Looking at the definitions of the automatic variables tells us which are
safe to use in the presence of spaces in filenames. Table 4-1 shows each
automatic variable and whether it is safe.

Table 4-1: Safety of Automatic Variables

Automatic variable Is it safe?
$@ Yes
$< Yes
$% Yes
$* Yes
$? No
$^ No
$+ No

Those that are inherently lists ($?, $^, and $+) are not safe because GNU
make lists are separated by spaces; the others are safe.

And it gets a little worse. Even though the first four automatic variables
in the table are safe to use, their modified versions with D and F suffixes
(which extract the directory and filename portions of the corresponding
automatic variable) are not. This is because they are defined in terms of the
dir and notdir functions.

Consider this example makefile:

/tmp/foo\ bar/baz: bar\ baz a\ b
 @echo Making $@ from $<

The value of $@ is /tmp/foo bar/baz as expected, but the value of $(@D)
is /tmp bar (as opposed to /tmp/foo bar) and the value of $(@F) is foo baz
(instead of just baz).

140 Chapter 4

Turn Spaces into Question Marks
Another way to deal with the spaces problem is to turn spaces into question
marks. Here’s the original makefile transformed:

foo?bar: bar?baz
 @echo Making $@ from $<

Because GNU make does globbing of target and prerequisite names (and
respects any spaces found), this will work. But the results are inconsistent.

If foo bar exists when this makefile runs, the pattern foo?bar will get
turned into foo bar and that value will be used for $@. If that file were missing
when the makefile is parsed, the pattern (and hence $@) remains as foo?bar.

Another problem also exists: ? could match something other than a
space. If there’s a file called foombar on the system, for example, the make-
file may end up working on the wrong file.

To get around this problem, Robert Mecklenburg defines two func-
tions to add and remove spaces automatically in Managing Projects with GNU
Make, 3rd edition (O’Reilly, 2004). The sq function turns every space into a
question mark (sq means space to question mark); the qs function does the
opposite (it turns every question mark into a space). Here’s the updated
makefile using two functions (sq and qs) to add and remove question marks.
This works unless any filename contains a question mark but requires wrap-
ping all uses of the filenames in calls to sq and qs.

sp :=
sp +=
qs = $(subst ?,$(sp),$1)
sq = $(subst $(sp),?,$1)

$(call sq,foo bar): $(call sq,bar baz)
 @echo Making $(call qs,$@) from $(call qs,$<)

Either way, because we still can’t be sure whether automatic variables
will have question marks in them, using the list-based automatic variables
or any GNU make list functions is still impossible.

My Advice
Given that GNU make has difficulty with spaces in filenames, what can you
do? Here’s my advice:

Rename your files to avoid spaces if possible.
However, this is impossible for many people because the spaces in file-
names may have been added by a third party.

Use 8.3 filenames.
If you are working with Windows, it may be possible to use short, 8.3
filenames, which allows you to still have spaces on disk but avoid them
in the makefile.

Pitfalls and Problems 141

Use \ for escaping.
If you need the spaces, escape them with \, which does give consistent
results. Just be sure to avoid the automatic variables listed as not safe in
Table 4-1.

If you use \ for escaping and you need to manipulate lists of filenames
that contain spaces, the best thing to do is substitute spaces with some other
character and then change them back again.

For example, the s+ and +s functions in the following code change
escaped spaces to + signs and back again. Then you can safely manipulate
lists of filenames using all the GNU make functions. Just be sure to remove
the + signs before using these names in a rule.

space :=
space +=

s+ = $(subst \$(space),+,$1)
+s = $(subst +,\$(space),$1)

Here’s an example using them to transform a list of source files with
escaped spaces into a list of object files, which are then used to define the
prerequisites of an all rule:

SRCS := a\ b.c c\ d.c e\ f.c
SRCS := $(call s+,$(SRCS))

OBJS := $(SRCS:.c=.o)

all: $(call +s,$(OBJS))

The source files are stored in SRCS with spaces in filenames escaped. So
SRCS contains three files named a b.c, c d.c, and e f.c. GNU make’s \ escap-
ing is used to preserve the escaped spaces in each name. Transforming
SRCS into a list of objects in OBJS is done in the usual manner using .c=.o to
replace each .c extension with .o, but first SRCS is altered using the s+ func-
tion so the escaped spaces become + signs. As a result, GNU make will see
SRCS as a list of three elements, a+b.c, c+d.c, and e+f.c, and changing the
extension will work correctly. When OBJS is used later in the makefile, the
+ signs are turned back into escaped spaces using a call to the function +s.

Path Handling
Makefile creators often have to manipulate filesystem paths, but GNU make
provides few functions for path manipulation. And cross-platform make is
difficult due to differences in path syntax. This section explains ways to
manipulate paths in GNU make and navigate through the cross-platform
minefield.

142 Chapter 4

Target Name Matching
Look at the following example makefile and suppose that ../foo is missing.
Does the makefile manage to create it?

.PHONY: all
all: ../foo

.././foo:
 touch $@

If you run that makefile with GNU make, you might be surprised to see
the following error:

$ make
make: *** No rule to make target `../foo', needed by `all'. Stop.

If you change the makefile to this:

.PHONY: all
all: ../foo

./../foo:
 touch $@

you’ll find that it works as expected and performs a touch ../foo.
The first makefile fails because GNU make doesn’t do path manipulation

on target names, so it sees two different targets called ../foo and .././foo,
and fails to make the connection between the two. The second makefile
works because I lied in the preceding sentence. GNU make does do a tiny bit
of path manipulation: it will strip leading ./ from target names. So in the
second makefile both targets are ../foo, and it works as expected.

The general rule with GNU make targets is that they are treated as literal
strings without interpreting them in any way. Therefore, it’s essential that
when you’re referring to a target in a makefile, you always ensure that the
same string is used.

Working with Path Lists
It bears repeating that GNU make lists are just strings in which any whitespace
is considered a list separator. Consequently, paths with spaces in them are
not recommended because it makes using many of GNU make’s built-in func-
tions impossible, and spaces in paths cause problems with targets.

For example, suppose a target is /tmp/sub directory/target, and we write
a rule for it like this:

/tmp/sub directory/target:
 @do stuff

Pitfalls and Problems 143

GNU make will actually interpret that as two rules, one for /tmp/sub and
one for directory/target, just as if you’d written this:

/tmp/sub:
 @do stuff
directory/target:
 @do stuff

You can work around that problem by escaping the space with \, but
that escape is poorly respected by GNU make (it works only in target names
and the $(wildcard) function).

Unless you must use them, avoid spaces in target names.

Lists of Paths in VPATH and vpath
Another place that lists of paths appear in GNU make is when specifying the
VPATH or in a vpath directive used to specify where GNU make finds prerequi-
sites. For example, it’s possible to set the VPATH to search for source files in a
list of : or whitespace separated paths:

VPATH = ../src:../thirdparty/src /src

vpath %c ../src:../thirdparty/src /src

GNU make will split that path correctly at either colons or whitespace.
On Windows systems, the native builds of GNU make use ; as the path
separator for VPATH (and vpath) because : is needed for drive letters. On
Windows, GNU make actually tries to be smart and splits paths on colons
unless it looks like a drive letter (one letter followed by a colon). This drive
letter intelligence actually creates a problem if you have a directory in the
path whose name is a single letter: in that case you must use ; as the path
separator. Otherwise, GNU make will think it’s a drive:

VPATH = ../src;../thirdparty/src /src

vpath %c ../src;../thirdparty/src /src

On both POSIX and Windows systems, a space in a path is a separa-
tor in a VPATH and vpath. So using spaces is the best bet for cross-platform
makefiles.

Using / or \
On POSIX systems / is the path separator, and on Windows systems it’s \.
It’s common to see paths being built up in makefiles like this:

SRCDIR := src
MODULE_DIR := module_1

MODULE_SRCS := $(SRCDIR)/$(MODULE_DIR)

144 Chapter 4

It would be ideal to remove the POSIX-only / there and replace it with
something that would work with a different separator. One way to do that is
to define a variable called / (GNU make lets you get away with using almost
anything as a variable name) and use it in place of /:

/ := /

SRCDIR := src
MODULE_DIR := module_1

MODULE_SRCS := $(SRCDIR)$/$(MODULE_DIR)

If that makes you uncomfortable, just call it SEP:

SEP := /

SRCDIR := src
MODULE_DIR := module_1

MODULE_SRCS := $(SRCDIR)$(SEP)$(MODULE_DIR)

Now when you switch to Windows, you can just redefine / (or SEP) to \.
It’s difficult to assign a literal \ on its own as a variable value (because GNU
make interprets it as a line continuation and it can’t be escaped), so it’s
defined here using $(strip).

/ := $(strip \)

SRCDIR := src
MODULE_DIR := module_1

MODULE_SRCS := $(SRCDIR)$/$(MODULE_DIR)

However, note that the Windows builds of GNU make will also accept /
as a path separator, so weird paths like c:/src are legal. Using those paths
will simplify the makefile, but be careful when passing them to a native
Windows tool that expects \ separated paths. If that’s necessary, use this
instead:

forward-to-backward = $(subst /,\,$1)

This simple function will convert a forward slash path to a back-
slash path.

Windows Oddity: Case Insensitive but Case Preserving
On POSIX systems filenames are case sensitive; on Windows they are
not. On Windows the files File, file, and FILE are all the same file. But
an oddity with Windows is that the first time a file is accessed, the specific

Pitfalls and Problems 145

case used is recorded and preserved. Thus, if we touch File, it will appear
as File in the filesystem (but can be accessed as FILE, file, or any other case
combination).

By default, GNU make does case-sensitive target comparisons, so the fol-
lowing makefile does not do what you might expect:

.PHONY: all
all: File

file:
 @touch $@

As is, this file causes an error, but you can compile GNU make on
Windows to do case-insensitive comparisons instead (with the build
HAVE_CASE_INSENSITIVE_FS option).

This oddity is more likely to arise when a target specified in a makefile
is also found in a wildcard search because the operating system may return
a different case than the case used in the makefile. The target names may
differ in case, and that may cause an unexpected No rule to make error.

Built-in Path Functions and Variables
You can determine the current working directory in GNU make using the
built-in CURDIR. Note that CURDIR will follow symlinks. If you are in /foo but
/foo is actually a symlink to /somewhere/foo, CURDIR will report the directory
as /somewhere/foo. If you need the non-symlink-followed directory name, use
the value of the environment variable PWD:

CURRENT_DIRECTORY := $(PWD)

But be sure to grab its value before any other part of the makefile has
changed PWD: it can be altered, just like any other variable imported from
the environment.

You can also find the directory in which the current makefile is stored
using the MAKEFILE_LIST variable that was introduced in GNU make 3.80. At
the start of a makefile, it’s possible to extract its directory as follows:

CURRENT_MAKEFILE := $(word $(words $(MAKEFILE_LIST)),$(MAKEFILE_LIST))
MAKEFILE_DIRECTORY := $(dir $(CURRENT_MAKEFILE))

GNU make has functions for splitting paths into components: dir, notdir,
basename, and suffix.

Consider the filename /foo/bar/source.c stored in the variable FILE. You
can use the functions dir, notdir, basename, and suffix to extract the directory,
filename, and suffix. So to get the directory, for example, use $(dir $(FILE)).
Table 4-2 shows each of these functions and its result.

146 Chapter 4

Table 4-2: Results of dir, notdir, basename, and suffix

Function Result
dir /foo/bar/

notdir source.c

basename source

suffix .c

You can see that the directory, the non-directory part, the suffix
(or extension), and the non-directory part without the suffix have been
extracted. These four functions make filename manipulation easy. If
no directory was specified, GNU make uses the current directory (./). For
example, suppose that FILE was just source.c. Table 4-3 shows the result for
each function.

Table 4-3: Results of dir, notdir, basename, and suffix
with No Directory Specified

Function Result
dir ./

notdir source.c

basename source

suffix .c

Because these functions are commonly used in conjunction with GNU
make’s automatic variables (like $@), GNU make provides a modifier syntax.
Appending D or F to any automatic variable is equivalent to calling $(dir) or
$(notdir) on it. For example, $(@D) is equivalent to $(dir $@) and $(@F) is the
same as $(notdir $@).

Useful Functions in 3.81: abspath and realpath
realpath is a GNU make wrapper for the C library realpath function, which
removes ./, resolves ../, removes duplicated /, and follows symlinks. The
argument to realpath must exist in the filesystem. The path returned by
realpath is absolute. If the path does not exist, the function returns an
empty string.

For example, you could find the full path of the current directory like
this: current := $(realpath ./).

abspath is similar but does not follow symlinks, and its argument does
not have to refer to an existing file or directory.

Pitfalls and Problems 147

Usman’s Law
make clean doesn’t make clean. That’s Usman’s law (named after a smart
coworker of mine who spent months working with real-world makefiles).
make clean is intended to return to a state in which everything will be
rebuilt from scratch. Often it doesn’t. Read on to find out why.

The Human Factor
The clean rule from the OpenSSL makefile looks like this:

clean:
 rm -f *.o *.obj lib tags core .pure .nfs* *.old *.bak fluff $(EXE)

Notice how it’s a long list of clearly human-maintained directories, pat-
terns, and filenames that need to be deleted to get back to a clean state.
Human maintenance means human error. Suppose someone adds a rule
that creates a temporary file with a fixed name. That temporary file should
be added to the clean rule, but it most likely won’t be.

Usman’s law strikes.

Poor Naming
Here’s a snippet found in many automatically generated makefiles:

mostlyclean::
 rm -f *.o

clean:: mostlyclean
 -$(LIBTOOL) --mode=clean rm -f $(program) $(programs)
 rm -f $(library).a squeeze *.bad *.dvi *.lj

extraclean::
 rm -f *.aux *.bak *.bbl *.blg *.dvi *.log *.pl *.tfm *.vf *.vpl
 rm -f *.*pk *.*gf *.mpx *.i *.s *~ *.orig *.rej *\#*
 rm -f CONTENTS.tex a.out core mfput.* texput.* mpout.*

In this example, three sorts of clean appear to have different degrees of
cleanliness: mostlyclean, clean, and extraclean.

mostlyclean just deletes the object files compiled from source. clean does
that plus deletes the generated library and a few other files. You’d think that
extraclean would delete more than the other two, but it actually deletes a
different set of files. And I’ve seen makefiles with reallyclean, veryclean,
deepclean, and even partiallyclean rules!

When you can’t tell from the naming what does what, it can easily lead
to potential problems down the line.

Usman’s law strikes again.

148 Chapter 4

Silent Failure
Here’s another makefile snippet that works some of the time:

clean:
 @-rm *.o &> /dev/null

The @ means that the command isn’t echoed. The - means that any
error returned is ignored and all output is redirected with &> to /dev/null,
making it invisible. Because no -f is on the rm command, any failure (from
say, permissions problems) will go totally unnoticed.

Usman’s law strikes again.

Recursive Clean
Many makefiles are recursive, and make clean must be recursive too, so you
see the following pattern:

SUBDIRS = library executable

.PHONY: clean
clean:
 for dir in $(SUBDIRS); do \
 $(MAKE) -C $$dir clean; \
 done

The problem with this is that it means make clean has to work correctly
in every directory in SUBDIR, leading to more opportunity for error.

Usman’s law strikes again.

Pitfalls and Benefits of GNU make Parallelization
Many build processes run for hours, so build managers commonly type make
and go home for the night. GNU make’s solution to this problem is parallel
execution: a simple command line option that causes GNU make to run jobs
in parallel using the dependency information in the makefile to run them in
the correct order.

In practice, however, GNU make parallel execution is severely limited by
the fact that almost all makefiles are written with the assumption that their
rules will run in series. Rarely do makefile authors think in parallel when writ-
ing their makefiles. That leads to hidden traps that either cause the build
to fail with a fatal error or, worse, build “successfully” but result in incorrect
binaries when GNU make is run in parallel mode.

This section looks at GNU make’s parallel pitfalls and how to work around
them to get maximum parallelism.

Pitfalls and Problems 149

Using -j (or -jobs)
To start GNU make in parallel mode, you can specify either the -j or --jobs
option on the command line. The argument to the option is the maximum
number of processes that GNU make will run in parallel.

For example, typing make --jobs=4 allows GNU make to run up to four
subprocesses in parallel, which would give a theoretical maximum speedup
of 4×. However, the theoretical time is severely limited by restrictions in the
makefile. To calculate the maximum actual speedup, you use Amdahl’s law
(which is covered in “Amdahl’s Law and the Limits of Parallelization” on
page 154).

One simple but annoying problem found in parallel GNU make is that
because the jobs are no longer run serially (and the order depends on the
timing of jobs), the output from GNU make will be sorted randomly depend-
ing on the actual order of job execution.

Fortunately, that problem has been addressed in GNU make 4.0 with the
--output-sync option described in Chapter 1.

Consider the example in Listing 4-9:

.PHONY: all
all: t5 t4 t1
 @echo Making $@

t1: t3 t2
 touch $@

t2:
 cp t3 $@

t3:
 touch $@

t4:
 touch $@

t5:
 touch $@

Listing 4-9: A simple makefile to illustrate parallel making

It builds five targets: t1, t2, t3, t4, and t5. All are simply touched except
for t2, which is copied from t3.

Running Listing 4-9 through standard GNU make without a parallel
option gives the output:

$ make
touch t5
touch t4
touch t3
cp t3 t2
touch t1
Making all

150 Chapter 4

The order of execution will be the same each time because GNU make
will follow the prerequisites depth first and from left to right. Note that
the left-to-right execution (in the all rule for example, t5 is built before t4,
which is built before t1) is part of the POSIX make standard.

Now if make is run in parallel mode, it’s clear that t5, t4, and t1 can be
run at the same time because there are no dependencies between them.
Similarly, t3 and t2 do not depend on each other, so they can be run in
parallel.

The output of a parallel run of Listing 4-9 might be:

$ make --jobs=16
touch t4
touch t5
touch t3
cp t3 t2
touch t1
Making all

Or even:

$ make --jobs=16
touch t3
cp t3 t2
touch t4
touch t1
touch t5
Making all

This makes any process that examines log files to check for build prob-
lems (such as diffing log files) difficult. Unfortunately, there’s no easy solu-
tion for this in GNU make without the --output-sync option, so you’ll just have
to live with it unless you upgrade to GNU make 4.0.

Missing Dependencies
The example in Listing 4-9 has an additional problem. The author fell into
the classic left-to-right trap when writing the makefile, so when it’s run in
parallel, it’s possible for the following to happen:

$ make --jobs=16
touch t5
touch t4
cp t3 t2
cp: cannot stat `t3': No such file or directory
make: *** [t2] Error 1

The reason is that when run in parallel, the rule to build t2 can occur
before the rule to build t3, and t2 needs t3 to have already been built. This
didn’t happen in the serial case because of the left-to-right assumption: the
rule to build t1 is t1: t3 t2, which implies that t3 will be built before t2.

Pitfalls and Problems 151

But no actual dependency exists in the makefile that states that t3 must
be built before t2. The fix is simple: just add t2: t3 to the makefile.

This is a simple example of the real problem of missing or implicit
(left-to-right) dependencies that plagues makefiles when run in parallel.
If a makefile breaks when run in parallel, it’s worth looking for missing
dependencies straightaway because they are very common.

The Hidden Temporary File Problem
Another way GNU make can break when running in parallel is if multiple rules
use the same temporary file. Consider the example makefile in Listing 4-10:

TMP_FILE := /tmp/scratch_file

.PHONY: all
all: t

t: t1 t2
 cat t1 t2 > $@

t1:
 echo Output from $@ > $(TMP_FILE)
 cat $(TMP_FILE) > $@

t2:
 echo Output from $@ > $(TMP_FILE)
 cat $(TMP_FILE) > $@

Listing 4-10: A hidden temporary file that breaks parallel builds

Run without a parallel option, GNU make produces the following output:

$ make
echo Output from t1 > /tmp/scratch_file
cat /tmp/scratch_file > t1
echo Output from t2 > /tmp/scratch_file
cat /tmp/scratch_file > t2
cat t1 t2 > t

and the t file contains:

Output from t1
Output from t2

But run in parallel, Listing 4-10 gives the following output:

$ make --jobs=2
echo Output from t1 > /tmp/scratch_file
echo Output from t2 > /tmp/scratch_file
cat /tmp/scratch_file > t1
cat /tmp/scratch_file > t2
cat t1 t2 > t 

152 Chapter 4

Now t contains:

Output from t2
Output from t2

This occurs because no dependency exists between t1 and t2 (because
neither requires the output of the other), so they can run in parallel. In the
output, you can see that they are running in parallel but that the output
from the two rules is interleaved. Because the two echo statements ran first,
t2 overwrote the output of t1, so the temporary file (shared by both rules)
had the wrong value when it was finally cated to t1, resulting in the wrong
value for t.

This example may seem contrived, but the same thing happens in real
makefiles when run in parallel, resulting in either broken builds or the wrong
binary being built. The yacc program for example, produces temporary files
called y.tab.c and y.tab.h. If more than one yacc is run in the same directory
at the same time, the wrong files could be used by the wrong process.

A simple solution for the makefile in Listing 4-10 is to change the defi-
nition of TMP_FILE to TMP_FILE = /tmp/scratch_file.$@, so its name will depend
on the target being built. Now a parallel run would look like this:

$ make --jobs=2
echo Output from t1 > /tmp/scratch_file.t1
echo Output from t2 > /tmp/scratch_file.t2
cat /tmp/scratch_file.t1 > t1
cat /tmp/scratch_file.t2 > t2
cat t1 t2 > t

A related problem occurs when multiple jobs in the makefile write to a
shared file. Even if they never read the file (for example, they might write to
a log file), locking the file for write access can cause competing jobs to stall,
reducing the overall performance of the parallel build.

Consider the example makefile in Listing 4-11 that uses the lockfile
command to lock a file and simulate write locking. Although the file is
locked, each job waits for a number of seconds:

LOCK_FILE := lock.me

.PHONY: all
all: t1 t2
 @echo done.

t1:
 @lockfile $(LOCK_FILE)
 @sleep 10
 @rm -f $(LOCK_FILE)
 @echo Finished $@

Pitfalls and Problems 153

t2:
 @lockfile $(LOCK_FILE)
 @sleep 20
 @rm -f $(LOCK_FILE)
 @echo Finished $@

Listing 4-11: Locking on shared files can lock a parallel build and make it run serially.

Running Listing 4-11 in a serial build takes about 30 seconds:

$ time make
Finished t1
Finished t2
done.
make 0.01s user 0.01s system 0% cpu 30.034 total

But it isn’t any faster in parallel, even though t1 and t2 should be able
to run in parallel:

$ time make -j4
Finished t1
Finished t2
done.
make -j4 0.01s user 0.02s system 0% cpu 36.812 total

It’s actually slower because of the way lockfile detects lock availability.
As you can imagine, write locking a file could cause similar delays in other-
wise parallel-friendly makefiles.

Related to the file locking problem is a danger concerning archive (ar)
files. If multiple ar processes were to run simultaneously on the same archive
file, the archive could be corrupted. Locking around archive updates is nec-
essary in a parallel build; otherwise, you’ll need to prevent your dependencies
from running multiple ar commands on the same file at the same time.

One way to prevent parallelism problems is to specify .NOTPARALLEL in a
makefile. If this is seen, the entire make execution will be run in series and
the -j or --jobs command line option will be ignored. .NOTPARALLEL is a very
blunt tool because it affects an entire invocation of GNU make, but it could
be handy in a recursive make situation with, for example, a third-party make-
file that is not parallel safe.

The Right Way to Do Recursive make
GNU make is smart enough to share parallelism across sub-makes if a make-
file using $(MAKE) is careful about how it calls sub-makes. GNU make has a
message passing mechanism that works across most platforms (Windows
support was added in GNU make 4.0) and enables sub-makes to use all the
available jobs specified through -j or --jobs by passing tokens across pipes
between the make processes.

154 Chapter 4

The only serious gotcha is that you must write your makefile in a way
that actually allows your sub-makes to run in parallel. The classic recursive
make style that uses a shell for loop to process each sub-make doesn’t allow
for more than one sub-make to run at once. For example:

SUBDIRS := foo bar baz

.PHONY: all
all:
 for d in $(SUBDIRS); \
 do \
 $(MAKE) –directory=$$d; \
 done

This code has a big problem: if sub-make fails, the make will look like it
has succeeded. It’s possible to fix that, but the fixes become more and more
complicated: other approaches are better.

When run in parallel mode, the all rule walks through each subdirectory
and waits for its $(MAKE) to complete. Even though each of those sub-makes
will be able to run in parallel, the overall make does not, meaning a less than
ideal speedup. For example, if the make in the bar directory is capable of run-
ning only four jobs at once, then running on a 16-core machine won’t make
the build any faster than on one with just 4 cores.

The solution is to remove the for loop and replace it with a single rule
for each directory:

SUBDIRS := foo bar baz

.PHONY: all $(SUBDIRS)
all: $(SUBDIRS)

$(SUBDIRS):
 $(MAKE) --directory=$@

Each directory is considered to be a phony target, because the directory
doesn’t actually get built.

Now each directory can run while the others are running, and parallel-
ism is maximized; it’s even possible to have dependencies between directories
causing some sub-makes to run before others. Directory dependencies can
be handy when it’s important that one sub-make runs before another.

Amdahl’s Law and the Limits of Parallelization
Additionally, there are real limits to the amount of parallelization that is
possible in a project. Look at Listing 4-12:

.PHONY: all
all: t
 @echo done

Pitfalls and Problems 155

t: t1 t2 t3 t4 t5 t6 t7 t8 t9 t10 t11 t12
 @sleep 10
 @echo Made $@

t1:
 @sleep 11
 @echo Made $@

t2:
 @sleep 4
 @echo Made $@

t3: t5
 @sleep 7
 @echo Made $@

t4:
 @sleep 9
 @echo Made $@

t5: t8
 @sleep 10
 @echo Made $@

t6:
 @sleep 2
 @echo Made $@

t7:
 @sleep 12
 @echo Made $@

t8:
 @sleep 3
 @echo Made $@

t9: t10
 @sleep 4
 @echo Made $@

t10:
 @sleep 6
 @echo Made $@

t11: t12
 @sleep 1
 @echo Made $@

t12:
 @sleep 9
 @echo Made $@

Listing 4-12: A makefile with sleep used to simulate jobs that take time to complete

156 Chapter 4

When run in series, it takes about 88 seconds to complete:

$ time make
Made t1
Made t2
Made t8
Made t5
Made t3
Made t4
Made t6
Made t7
Made t10
Made t9
Made t12
Made t11
Made t
done
make 0.04s user 0.03s system 0% cpu 1:28.68 total

What’s the maximum speedup possible, assuming as many CPUs are
available as desired? Working through the makefile step by step, you’ll
see that t takes 10 seconds to build and everything else must be built
before that. t1, t2, t4, t6, and t7 are all independent, and the longest of
them takes 12 seconds. t3 waits for t5, which needs t8: that chain takes a
total of 20 seconds. t9 needs t10 for a total of 10 seconds, and t11 needs
t12 for another 10 seconds.

So the longest serial part of this build is the sequence t, t3, t5, t8, which
takes a total of 30 seconds. This build can never go faster than 30 seconds
(or 2.93 times faster than the serial 88 second time). How many processors
are needed to achieve that speedup?

In general, the maximum speedup achievable is governed by Amdahl’s
law: if F is the fraction of the build that cannot be parallelized and N is the
number of available processors, then the maximum speedup achievable is
1 / (F + (1 - F) / N).

In the Listing 4-12 example, 34 percent of the build can’t be parallel-
ized. Table 4-4 shows the results of applying Amdahl’s law:

Table 4-4: Maximum Speedup Based on Number of Processors

Number of processors Maximum speedup

2 1.49x

3 1.79x

4 1.98x

5 2.12x

6 2.22x

7 2.30x

8 2.37x

9 2.42x

Pitfalls and Problems 157

Number of processors Maximum speedup

10 2.46x

11 2.50x

12 2.53x

For this small build, the maximum speedup Amdahl’s law predicts has
a plateau starting at around eight processors. The actual plateau is further
limited by the fact that only 13 possible jobs are in the build.

Looking at the structure of the build, we can see that eight processors is
the maximum because five jobs can run in parallel without any dependen-
cies: t1, t2, t4, t6, and t7. Then three small chains of jobs can each use one
processor at a time: t3, t5, and t8; t9 and t10; and t11 and t12. Building t can
reuse one of the eight processors because they’ll all be idle at that point.

A real-world instance of Amdahl’s law significantly impacting build
times occurs with languages that have a linking step, such as C and C++.
Typically, all the objects files are built before the link step and then a single
(often huge) link process has to run. That link process is often not parallel-
izable and becomes the limiting factor on build parallelization.

Making $(wildcard) Recursive
The built-in $(wildcard) function is not recursive: it only searches for files in
a single directory. You can have multiple globbing patterns in a $(wildcard)
and use that to look in subdirectories. For example, $(wildcard */*.c) finds
all the .c files in all subdirectories of the current directory. But if you need
to search an arbitrary tree of directories, there’s no built-in way to do it.

Fortunately, it’s pretty easy to make a recursive version of $(wildcard),
like this:

rwildcard=$(foreach d,$(wildcard $1*),$(call rwildcard,$d/,$2) $(filter $(subst *,%,$2),$d))

The function rwildcard takes two parameters: the first is the directory
from which to start searching (this parameter can be left empty to start from
the current directory), and the second is the glob pattern for the files to find
in each directory.

For example, to find all .c files in the current directory (along with its
subdirectories), use this:

$(call rwildcard,,*.c)

Or to find all .c files in /tmp, use this:

$(call rwildcard,/tmp/,*.c)

158 Chapter 4

rwildcard also supports multiple patterns. For example:

$(call rwildcard,/src/,*.c *.h)

This finds all .c and .h files under /src/.

Which Makefile Am I In?
A common request is: Is there a way to find the name and path of the cur-
rent makefile? By current, people usually mean the makefile that GNU make
is currently parsing. There’s no built-in way to quickly get the answer, but
there is a way using the GNU make variable MAKEFILE_LIST.

MAKEFILE_LIST is the list of makefiles currently loaded or included. Each
time a makefile is loaded or included, the MAKEFILE_LIST is appended with its
path and name. The paths and names in the variable are relative to the cur-
rent working directory (where GNU make was started or where it moved to
with the -C or --directory option), but you can access the current directory
from the CURDIR variable.

So using that, you can define a GNU make function (let’s call it where-am-i)
that will return the current makefile (it uses $(word) to get the last makefile
name from the list):

where-am-i = $(CURDIR)/$(word $(words $(MAKEFILE_LIST)),$(MAKEFILE_LIST))

Then, whenever you want to find the full path to the current makefile,
write the following at the top of the makefile:

THIS_MAKEFILE := $(call where-am-i)

It’s important that this line goes at the top because any include state-
ment in the makefile will change the value of MAKEFILE_LIST, so you want to
grab the location of the current makefile before that happens.

Listing 4-13 shows an example makefile that uses where-am-i and includes
another makefile from the foo/ subdirectory, which, in turn, includes a
makefile from the foo/bar/ directory.

where-am-i = $(CURDIR)/$(word ($words $(MAKEFILE_LIST)),$(MAKEFILE_LIST)

include foo/makefile

Listing 4-13: A makefile that can determine where it is located on the filesystem

Pitfalls and Problems 159

The contents of foo/makefile is shown in Listing 4-14.

THIS_MAKEFILE := $(call where-am-i)
$(warning $(THIS_MAKEFILE))

include foo/bar/makefile

Listing 4-14: A makefile included by Listing 4-13

The contents of foo/bar/makefile is shown in Listing 4-15.

THIS_MAKEFILE := $(call where-am-i)
$(warning $(THIS_MAKEFILE))

Listing 4-15: A makefile included by Listing 4-14

Putting the three makefiles in Listings 4-13, 4-14 and 4-15 in /tmp (and
subdirectories) and running GNU make gives the output:

foo/makefile:2: /tmp/foo/makefile
foo/bar/makefile:2: /tmp/foo/bar/makefile

In this chapter, we’ve looked at common problems that makefile creators
and maintainers run into when working on real makefiles. In any sizable
project that uses make, you are likely to run into one or more (perhaps even
all!) of them.

5
P u s h i n g t h e E n v e l o p e

In this chapter, you’ll find techniques
that you usually won’t need but can, from

time to time, be very useful. For example,
sometimes it’s useful to extend GNU make’s

language by creating new functions in C or even Guile.
This chapter shows how to do that and more.

Doing Arithmetic
GNU make has no built-in arithmetic capability. But it is possible to create
functions for addition, subtraction, multiplication, and division of integers.
You can also create functions for integer comparisons, such as greater than or
not equal. These functions are implemented entirely using GNU make’s built-
in list and string manipulation functions: $(subst), $(filter), $(filter-out),
$(words), $(wordlist), $(call), $(foreach), and $(if). After we define our arith-
metic functions, we’ll implement a simple calculator in GNU make.

162 Chapter 5

To create an arithmetic library, we first need a representation of numbers.
A simple way to represent a number is with a list containing that number of
items. For example, for the arithmetic library, a number is a list of letter xs.
So the number 5 is represented by x x x x x.

Given this representation, we can use the $(words) function to convert
from the internal form (all xs) to a human-readable form. For example, the
following will output 5:

five := x x x x x

all: ; @echo $(words $(five))

Let’s create a user-defined function decode to translate from the x repre-
sentation to a number:

decode = $(words $1)

To use decode in a makefile, we need to use the GNU make function
$(call), which can call a user-defined function with a set of arguments:

five := x x x x x

all: ; @echo $(call decode,$(five))

The arguments will be stored in temporary variables called $1, $2, $3,
and so on. In decode, which takes one argument—the number to decode—
we just use $1.

Addition and Subtraction
Now that we have a representation, we can define functions for addition,
increment (by 1), and decrement (by 1):

plus = $1 $2
increment = x $1
decrement = $(wordlist 2,$(words $1),$1)

The plus function makes a list of its two arguments; concatenation is
enough to implement addition with the x representation. The increment
function adds a single x to its argument. decrement strips the first x off its
argument by asking for the entire string of xs starting from index 2. For
example, the following code will output 11:

two := x x
three := x x x
four := x x x x
five := x x x x x
six := x x x x x x

all: ; @echo $(call decode,$(call plus,$(five),$(six)))

Pushing the Envelope 163

Notice the nested calls to plus inside a call to decode so that we output
the number 11 instead of a list of 11 xs.

We can create another simple function, double, which doubles its argument:

double = $1 $1

Implementing subtraction is more challenging that addition. But before
we do that, let’s implement max and min functions:

max = $(subst xx,x,$(join $1,$2))
min = $(subst xx,x,$(filter xx,$(join $1,$2)))

The max function uses two GNU make built-in functions: $(join) and
$(subst). $(join LIST1,LIST2) takes two lists as arguments and joins the two
lists together by concatenating the first element of LIST1 with the first ele-
ment of LIST2 and so on through the list. If one list is longer than the other,
the remaining items are just appended.

$(subst FROM,TO,LIST) runs through a list and substitutes elements that
match a FROM pattern with the TO value. To see how max works, consider the
sequence of events in computing $(call max,$(five),$(six)):

$(call max,$(five),$(six))
 $(call max,x x x x x,x x x x x x)
 $(subst xx,x,$(join x x x x x,x x x x x x))
 $(subst xx,x,xx xx xx xx xx x)
 x x x x x x

First, $(join) joins the list with five xs with the list with six xs, resulting
in a list with six elements, the first five of which are xx. Then, $(subst) turns
the first five xxs into xs. The final result is six xs, which is the maximum.

To implement min, we use a similar trick, but we keep only the xxs and
throw away the xs:

$(call min,$(five),$(six))
 $(call min,x x x x x,x x x x x x)
 $(subst xx,x,$(filter xx,$(join x x x x x,x x x x x x)))
 $(subst xx,x,$(filter xx,xx xx xx xx xx x))
 $(subst xx,x,xx xx xx xx xx)
 x x x x x

The xxs represent where the two lists could be joined. The shorter of
the two lists will have only xxs. The $(filter PATTERN,LIST) function runs
through the list and removes elements that do not match the pattern.

A similar pattern works for subtraction:

subtract = $(if $(call gte,$1,$2), \
 $(filter-out xx,$(join $1,$2)), \
 $(warning Subtraction underflow))

164 Chapter 5

For a moment, ignore the $(warning) and $(if) parts of the definition,
and focus on $(filter-out). $(filter-out) is the opposite of $(filter): it
removes elements from a list that match the pattern. For example, we can
see that the $(filter-out) here implements subtraction:

$(filter-out xx,$(join $(six),$(five)))
 $(filter-out xx,$(join x x x x x x,x x x x x))
 $(filter-out xx,xx xx xx xx xx x)
 x

Unfortunately, this would also work if five and six were reversed, so we
first need to check that the first argument is greater than or equal to the
second. In the subtract definition, the special function gte (greater than or
equal) returns a non-empty string if its first argument is greater than its sec-
ond. We use gte to decide whether to do the subtraction or output a warn-
ing message using $(warning).

The gte function is implemented using two other functions for greater
than (gt) and equal (eq):

gt = $(filter-out $(words $2),$(words $(call max,$1,$2)))
eq = $(filter $(words $1),$(words $2))
gte = $(call gt,$1,$2)$(call eq,$1,$2)

gte will return a non-empty string if either gt or eq returns a non-empty
string.

The eq function is a bit of a mind-bender. It works out the number of
elements in its two arguments, treats one argument as a pattern and the
other as a list, and uses $(filter) to decide whether they are the same.
Here’s an example where they are equal:

$(call eq,$(five),$(five))
 $(call eq,x x x x x,x x x x x)
 $(filter $(words x x x x x),$(words x x x x x))
 $(filter 5,5)
 5

The eq function converts both $(five)s to a list of five xs. These are
then both converted to the number 5 using $(words). The two 5s are fed to
$(filter). Because the two arguments of $(filter) are the same, the result
is 5 and because 5 is not an empty string, it is interpreted as meaning true.

Here’s what happens when they are not:

$(call eq,$(five),$(six))
 $(call eq,x x x x x,x x x x x x)
 $(filter $(words x x x x x),$(words x x x x x x))
 $(filter 5,6)

This proceeds as for $(call eq,$(five),$(five)) but with $(six) in place of
one of the $(five)s. Since $(filter 5,6) is an empty string, the result is false.

Pushing the Envelope 165

So the $(filter) function acts as a kind of string equality operator; the
two strings in our case are the lengths of the two number strings. The gt
function is implemented in a similar way: it returns a non-empty string if
the length of the first number string is not equal to the maximum of the
two number strings. Here’s an example:

$(call gt,$(six),$(five))
 $(call gt,x x x x x x,x x x x x)
 $(filter-out $(words x x x x x),
 $(words $(call max,x x x x x x,x x x x x)))
 $(filter-out $(words x x x x x),$(words x x x x x x))
 $(filter-out 5,6)
 6

The gt function works in a manner similar to eq (described previously)
but uses $(filter-out) instead of $(filter). It converts both x-representation
numbers to digits but compares—using $(filter-out)—the first of them
against the max of the two. When the first number is greater than the second,
two different numbers are fed to $(filter-out). Because they are different,
$(filter-out) returns a non-empty string indicating true.

Here’s an example in which the first number is less than the second:

$(call gt,$(five),$(six))
 $(call gt,x x x x x,x x x x x x)
 $(filter-out $(words x x x x x x),
 $(words $(call max,x x x x x x,x x x x x)))
 $(filter-out $(words x x x x x x),$(words x x x x x x))
 $(filter-out 6,6)

Here, because the max of the two numbers is the same as the second
number (because it’s the largest), $(filter-out) is fed the same number and
returns an empty string indicating false.

Similarly, we can define not-equal (ne), less-than (lt), and less-than-or-equal
(lte) operators:

lt = $(filter-out $(words $1),$(words $(call max,$1,$2)))
ne = $(filter-out $(words $1),$(words $2))
lte = $(call lt,$1,$2)$(call eq,$1,$2)

lte is defined in terms of lt and eq. Because a non-empty string
means true, lte just concatenates the values returned by lt and eq; if
either returned true, then lte returns true.

Multiplication and Division
We’ll have a pretty powerful arithmetic package after we define just three
more functions: multiply, divide, and encode. encode is a way to create a num-
ber string of xs from an integer; we’ll leave that for last and then implement
our calculator.

166 Chapter 5

Multiplication uses the $(foreach VAR,LIST,DO) function. It sets that
variable named VAR to each element of LIST and does whatever DO says. So
multiplication is easy to implement:

multiply = $(foreach a,$1,$2)

multiply just strings together its second argument for however many xs
there are in the first argument. For example:

$(call multiply,$(two),$(three))
 $(call multiply,x x,x x x)
 $(foreach a,x x,x x x)
 x x x x x x

divide is the most complex function of the lot because it requires
recursion:

divide = $(if $(call gte,$1,$2), \
 x $(call divide,$(call subtract,$1,$2),$2),)

If its first argument is less than its second, division returns 0 because
the ELSE part of the $(if) is empty (see the ,) at the end). If division is pos-
sible, divide works by repeated subtraction of the second argument from
the first, using the subtract function. Each time it subtracts, it adds an x and
calls divide again. Here’s an example:

$(call divide,$(three),$(two))
 $(call divide,x x x,x x)
 $(if $(call gte,x x x,x x),
 x $(call divide,$(call subtract,x x x,x x),x x),)

 x $(call divide,$(call subtract,x x x,x x),x x)
 x $(call divide,x,x x)
 x $(if $(call gte,x,x x),
 x $(call divide,$(call subtract,x,x x),x x),)

 x

First, gte returns a non-empty string, so recursion happens. Next, gte
returns an empty string, so no more recursion occurs.

We can avoid recursion in the special case of division by 2; we define
the halve function to be the opposite of double:

halve = $(subst xx,x, \
 $(filter-out xy x y, \
 $(join $1,$(foreach a,$1,y x))))

By now you’ve seen all the functions used in halve. Work through an
example, say $(call halve,$(five)), to see how it works.

Pushing the Envelope 167

The only tricky thing to do is turn a number a user enters into a string
of xs. The encode function does this by deleting a substring of xs from a pre-
defined list of xs:

16 := x x x x x x x x x x x x x x x x
input_int := $(foreach a,$(16), \
 $(foreach b,$(16), \
 $(foreach c,$(16),$(16)))))

encode = $(wordlist 1,$1,$(input_int))

Here we are limited to entering numbers up to 65536. We can fix that
by changing the number of xs in input_int. Once we have the number in the
encoding, only available memory limits the size of integers we can work with.

Using Our Arithmetic Library: A Calculator
To really show off this library, here’s an implementation of a Reverse Polish
Notation calculator written entirely in GNU make functions:

stack :=

push = $(eval stack := $$1 $(stack))
pop = $(word 1,$(stack))$(eval stack := $(wordlist 2,$(words $(stack)),$(stack)))
pope = $(call encode,$(call pop))
pushd = $(call push,$(call decode,$1))
comma := ,
calculate = $(foreach t,$(subst $(comma), ,$1),$(call handle,$t))$(stack)
seq = $(filter $1,$2)
handle = $(call pushd, \
 $(if $(call seq,+,$1), \
 $(call plus,$(call pope),$(call pope)), \
 $(if $(call seq,-,$1), \
 $(call subtract,$(call pope),$(call pope)), \
 $(if $(call seq,*,$1), \
 $(call multiply,$(call pope),$(call pope)), \
 $(if $(call seq,/,$1), \
 $(call divide,$(call pope),$(call pope)), \
 $(call encode,$1))))))

.PHONY: calc
calc: ; @echo $(call calculate,$(calc))

The operators and numbers are passed into GNU make in the calc vari-
able, separated by commas. For example:

$ make calc="3,1,-,3,21,5,*,+,/"
54

168 Chapter 5

Clearly, this is not what GNU make was designed for, but it does show the
power of GNU make functions. Here’s the complete commented makefile:

input_int consists of 65536 x's built from the 16 x's in 16

16 := x x x x x x x x x x x x x x x x
input_int := $(foreach a,$(16),$(foreach b,$(16),$(foreach c,$(16),$(16)))))

decode turns a number in x's representation into an integer for human
consumption

decode = $(words $1)

encode takes an integer and returns the appropriate x's
representation of the number by chopping $1 x's from the start of
input_int

encode = $(wordlist 1,$1,$(input_int))

plus adds its two arguments, subtract subtracts its second argument
from its first if and only if this would not result in a negative result

plus = $1 $2

subtract = $(if $(call gte,$1,$2), \
 $(filter-out xx,$(join $1,$2)), \
 $(warning Subtraction underflow))

multiply multiplies its two arguments and divide divides its first
argument by its second

multiply = $(foreach a,$1,$2)
divide = $(if $(call gte,$1,$2),x $(call divide,$(call subtract,$1,$2),$2),)

max returns the maximum of its arguments and min the minimum

max = $(subst xx,x,$(join $1,$2))
min = $(subst xx,x,$(filter xx,$(join $1,$2)))

The following operators return a non-empty string if their result is true:
#
gt First argument is greater than second argument
gte First argument is greater than or equal to second argument
lt First argument is less than second argument

lte First argument is less than or equal to second argument
eq First argument is numerically equal to the second argument
ne First argument is not numerically equal to the second argument

gt = $(filter-out $(words $2),$(words $(call max,$1,$2)))
lt = $(filter-out $(words $1),$(words $(call max,$1,$2)))
eq = $(filter $(words $1),$(words $2))
ne = $(filter-out $(words $1),$(words $2))
gte = $(call gt,$1,$2)$(call eq,$1,$2)

Pushing the Envelope 169

lte = $(call lt,$1,$2)$(call eq,$1,$2)

increment adds 1 to its argument, decrement subtracts 1. Note that
decrement does not range check and hence will not underflow, but
will incorrectly say that 0 - 1 = 0

increment = $1 x
decrement = $(wordlist 2,$(words $1),$1)

double doubles its argument, and halve halves it

double = $1 $1
halve = $(subst xx,x,$(filter-out xy x y,$(join $1,$(foreach a,$1,y x))))

This code implements a Reverse Polish Notation calculator by
transforming a comma-separated list of operators (+ - * /) and
numbers stored in the calc variable into the appropriate calls to
the arithmetic functions defined in this makefile.

This is the current stack of numbers entered into the calculator. The push
function puts an item onto the top of the stack (the start of the list), and
pop removes the top item.

stack :=

push = $(eval stack := $$1 $(stack))
pop = $(word 1,$(stack))$(eval stack := $(wordlist 2,$(words $(stack)),$(stack)))

pope pops a number off the stack and encodes it
and pushd pushes a number onto the stack after decoding

pope = $(call encode,$(call pop))
pushd = $(call push,$(call decode,$1))

calculate runs through the input numbers and operations and either
pushes a number on the stack or pops two numbers off and does a
calculation followed by pushing the result back. When calculate is
finished, there will be one item on the stack, which is the result.

comma := ,
calculate=$(foreach t,$(subst $(comma), ,$1),$(call handle,$t))$(stack)

seq is a string equality operator that returns true (a non-empty
string) if the two strings are equal

seq = $(filter $1,$2)

handle is used by calculate to handle a single token. If it's an
operator, the appropriate operator function is called; if it's a
number, it is pushed.

handle = $(call pushd, \
 $(if $(call seq,+,$1), \
 $(call plus,$(call pope),$(call pope)), \
 $(if $(call seq,-,$1), \

170 Chapter 5

 $(call subtract,$(call pope),$(call pope)), \
 $(if $(call seq,*,$1), \
 $(call multiply,$(call pope),$(call pope)), \
 $(if $(call seq,/,$1), \
 $(call divide,$(call pope),$(call pope)), \
 $(call encode,$1))))))

.PHONY: calc
calc: ; @echo $(call calculate,$(calc))

You’ll get a closer look at these techniques in Chapter 6 when you learn
about the GNU Make Standard Library.

Making an XML Bill of Materials
With standard GNU make output, it’s difficult to answer the question of what
got built and why. This section presents a simple technique to get GNU make
to create an XML file containing a bill of materials (BOM). The BOM contains
the names of all the files built by the makefile and is nested to show the pre-
requisites of each file.

An Example Makefile and BOM
Listing 5-1 shows an example makefile. We’ll look at its BOM and then work
backward to see how the BOM JSON file was generated.

all: foo bar
 @echo Making $@

foo: baz
 @echo Making $@

bar:
 @echo Making $@

baz:
 @echo Making $@

Listing 5-1: A simple makefile to illustrate the BOM

This makes all from foo and bar. In turn, foo is made from baz. Running
this code in GNU make produces the following output:

$ make
Making baz
Making foo
Making bar
Making all

Pushing the Envelope 171

From the output, it’s impossible to identify the tree-ordering of the
build or which files depend on which. In this case, the makefile is small
and relatively easy to trace by hand; in a real makefile, hand tracing is
almost impossible.

It would be nice to produce output like that shown in Listing 5-2 that
shows what was built and why:

<rule target="all">
<prereq>
 <rule target="foo">
 <prereq>
 <rule target="baz" />
 </prereq>
 </rule>
 <rule target="bar" />
</prereq>
</rule>

Listing 5-2: An XML document showing the structure of the example makefile

Here, each rule run by the makefile has a <rule> tag added with a target
attribute giving the name of the target that the rule built. If the rule had
any prerequisites, within the <rule>/</rule> pair a list of prerequisite rules
would be enclosed in <prereq>/</prereq>.

You can see the structure of the makefile reflected in the nesting of the
tags. Loading the XML document into an XML editor (or simply into a web
browser) allows you to expand and contract the tree at will to explore the
structure of the makefile.

How It Works
To create the output shown in Listing 5-2, the example makefile is modi-
fied to include a special bom makefile using the standard include bom method.
With that included, we can generate the XML output by running GNU make
using a command line, such as make bom-all.

bom-all instructs GNU make to build the BOM starting with the all tar-
get. It’s as if you typed make all, but now an XML document will be created.

By default, the XML document has the same name as the makefile but
with .xml appended. If the example makefile was in example.mk, the XML
document created would be called example.mk.xml.

Listing 5-3 shows the contents of the bom makefile to include:

u PARENT_MAKEFILE := $(word $(words $(MAKEFILE_LIST)),x $(MAKEFILE_LIST))
v bom-file := $(PARENT_MAKEFILE).xml

w bom-old-shell := $(SHELL)
x SHELL = $(bom-run)$(bom-old-shell)

bom-%: %
y  @$(shell rm -f $(bom-file))$(call bom-dump,$*)

172 Chapter 5

bom-write = $(shell echo '$1' >> $(bom-file))
z bom-dump = $(if $(bom-prereq-$1),$(call bom-write,<rule target="$1">) \

$(call bom-write,<prereq>)$(foreach p,$(bom-prereq-$1), \
$(call bom-dump,$p))$(call bom-write,</prereq>)$(call bom-write,</rule>), \
$(call bom-write,<rule target="$1" />))

{ bom-run = $(if $@,$(eval bom-prereq-$@ := $^))

Listing 5-3: The bom makefile that creates XML BOMs

First we determine the correct name for the XML file by extracting the
name of the makefile that included bom into PARENT_MAKEFILE u, appending
.xml, and storing the resulting name in bom-file v.

Then we use a trick that’s appeared in this book a number of times:
the SHELL hack. GNU make will expand the value of $(SHELL) for every rule
that’s run in the makefile. And at the time that $(SHELL) is expanded, the
per-rule automatic variables (such as $@) have already been set. So by
modifying SHELL, we can perform some task for every rule in the makefile
as it runs.

At w, we store the original value of SHELL in bom-old-shell using an
immediate assignment (:=), and we then redefine SHELL to be the expan-
sion of $(bom-run) and the original shell at x. Because $(bom-run) actually
expands to an empty string, the effect is that bom-run is expanded for each
rule in the makefile, but the actual shell used is unaffected.

bom-run is defined at {. It uses $(eval) to store the relationship between
the current target being built (the $(if) ensures that $@ is defined) and
its prerequisites. For example, when foo is being built, a call will be made
to bom-run with $@ set to foo and $^ (the list of all prerequisites) set to baz.
bom-run will set the value of bom-prereq-foo to baz. Later, the values of these
bom-prereq-X variables are used to print out the XML tree.

At y, we define the pattern rule that handles the bom-% target. Because
the prerequisite of bom-% is %, this pattern rule has the effect of building the
target matching the % and then building bom-%. In our example, running
make bom-all matches against this pattern rule to build all and then run the
commands associated with bom-% with $* set to all.

bom-%’s commands first delete the bom-file and then recursively dump out
the XML starting from $*. In this example, where the user did make bom-all,
the bom-% commands call bom-dump with the argument all.

We define bom-dump at z. It’s fairly routine: it uses a helper function
bom-write to echo fragments of XML to the bom-file and calls itself for each
of the targets in the prerequisites of each target it is dumping. Prerequisites
are extracted from the bom-prereq-X variables created by bom-run.

Gotchas
The technique in Listing 5-3 comes with a few gotchas. One gotcha is that
the technique can end up producing enormous amounts of output. This
is because it will print the entire tree below any target. If a target appears

Pushing the Envelope 173

multiple times in the tree, a large tree can be repeated many times in the
output. Even for small projects, this can make the dump time for the XML
very lengthy.

As a workaround, we can change the definition of bom-dump to just
dump the prerequisite information once for each target. This is much
faster than the approach in Listing 5-3 and could be processed by a script
like the following to help understand the structure of the make:

bom-%: %
 @$(shell rm -f $(bom-file))$(call bom-write,<bom>)$(call bom-dump,$*)$(call bom-write,</bom>)

bom-write = $(shell echo '$1' >> $(bom-file))

bom-dump = $(if $(bom-prereq-$1),$(call bom-write,<rule target="$1">) \
$(call bom-write,<prereq>)$(foreach p,$(bom-prereq-$1), \
$(call bom-write,<rule target="$p" />))$(call bom-write,</prereq>) \
$(call bom-write,</rule>),$(call bom-write,<rule target="$1" />)) \
$(foreach p,$(bom-prereq-$1),$(call bom-dump,$p))$(eval bom-prereq-$1 :=)

For the example makefile in Listing 5-1, the XML document now looks
like this:

<bom>
<rule target="all">
 <prereq>
 <rule target="foo" />
 <rule target="bar" />
 </prereq>
</rule>
<rule target="foo">
 <prereq>
 <rule target="baz" />
 </prereq>
</rule>
<rule target="baz" />
<rule target="bar" />
</bom>

Another gotcha is that if the makefile includes rules with no commands,
those rules will cause a break in the tree outputted by the technique in
Listing 5-3. For example, if the example makefile were this:

all: foo bar
 @echo Making $@

foo: baz

bar:
 @echo Making $@

baz:
 @echo Making $@

174 Chapter 5

the resulting XML would not mention baz at all because the rule for foo
doesn’t have any commands. So SHELL is not expanded, and the hack doesn’t
work. Here’s the XML in that case:

<bom>
<rule target="all">
 <prereq>
 <rule target="foo" />
 <rule target="bar" />
 </prereq>
</rule>
<rule target="foo" />
<rule target="bar" />
</bom>

As a workaround, we can modify foo: baz to include a useless command:

foo: baz ; @true

Now the correct results will be generated.

Advanced User-Defined Functions
In Chapter 1, we looked at creating user-defined functions in GNU make.
Now we’ll look inside the GNU make source code to see how we can enhance
GNU make with our own built-in functions by writing some C code.

First, we get the GNU make source code from the Free Software Foundation.
For this section, I’m working with GNU make 3.81. Things haven’t changed
much with GNU make 3.82 or 4.0.

Download make-3.81.tar.gz, and gunzip and untar, and then build GNU
make using the standard configure and make:

$ cd make-3.81
$./configure
$ make

With that done, we are left with a working GNU make in the same directory.

Getting Started Modifying GNU make
It’s handy to be able to tell which GNU make you’re running, so as a first
modification let’s change the message printed out when we ask for the ver-
sion information. Here’s the default:

$./make -v
GNU Make 3.81
Copyright (C) 2006 Free Software Foundation, Inc.
This is free software; see the source for copying conditions.

Pushing the Envelope 175

There is NO warranty; not even for MERCHANTABILITY or FITNESS FOR A
PARTICULAR PURPOSE.

This program built for i386-apple-darwin9.2.0

As you can see, I’m working on a Mac (that final string will change depend-
ing on the machine you are working with) with GNU make version 3.81.

Let’s change that message so it prints (with jgc's modifications) after
the version number. To do that, we need to open the file main.c in a text edi-
tor and find the function print_version (at line 2,922), which looks like this:

/* Print version information. */

static void
print_version (void)
{
static int printed_version = 0;

char *precede = print_data_base_flag ? "# " : "";

if (printed_version)
 /* Do it only once. */
 return;

/* Print this untranslated. The coding standards recommend translating the
 (C) to the copyright symbol, but this string is going to change every
 year, and none of the rest of it should be translated (including the
 word "Copyright", so it hardly seems worth it. */

printf ("%sGNU Make %s\n\
%sCopyright (C) 2006 Free Software Foundation, Inc.\n",
 precede, version_string, precede);

printf (_("%sThis is free software; see the source for copying conditions.\n\
%sThere is NO warranty; not even for MERCHANTABILITY or FITNESS FOR A\n\
%sPARTICULAR PURPOSE.\n"),
 precede, precede, precede);

if (!remote_description || *remote_description == '\0')
 printf (_("\n%sThis program built for %s\n"), precede, make_host);
else
 printf (_("\n%sThis program built for %s (%s)\n"),
 precede, make_host, remote_description);

printed_version = 1;

/* Flush stdout so the user doesn't have to wait to see the
 version information while things are thought about. */
fflush (stdout);
}

176 Chapter 5

The first printf in print_version is where the version number is printed.
We can modify it like this:

printf ("%sGNU Make %s (with jgc's modifications)\n\
%sCopyright (C) 2006 Free Software Foundation, Inc.\n",
 precede, version_string, precede);

Save the file, and then rerun make. Now enter make -v:

$./make -v
GNU Make 3.81 (with jgc's modifications)
Copyright (C) 2006 Free Software Foundation, Inc.
This is free software; see the source for copying conditions.
There is NO warranty; not even for MERCHANTABILITY or FITNESS FOR A
PARTICULAR PURPOSE.

This program built for i386-apple-darwin9.2.0

We now know which version we’re working with.

Anatomy of a Built-In Function
GNU make’s built-in functions are defined in the file function.c. To begin
understanding how this file works, take a look at the table of functions that
GNU make knows about. It’s called function_table_init[] and is on line 2,046.
Because it’s quite large, I’ve removed some lines from the middle:

static struct function_table_entry function_table_init[] =
{
/* Name/size */ /* MIN MAX EXP? Function */
{ STRING_SIZE_TUPLE("abspath"), 0, 1, 1, func_abspath},
{ STRING_SIZE_TUPLE("addprefix"), 2, 2, 1,
func_addsuffix_addprefix},
{ STRING_SIZE_TUPLE("addsuffix"), 2, 2, 1,
func_addsuffix_addprefix},
{ STRING_SIZE_TUPLE("basename"), 0, 1, 1, func_basename_dir},
{ STRING_SIZE_TUPLE("dir"), 0, 1, 1, func_basename_dir},
--snip--

{ STRING_SIZE_TUPLE("value"), 0, 1, 1, func_value},
{ STRING_SIZE_TUPLE("eval"), 0, 1, 1, func_eval},
#ifdef EXPERIMENTAL
{ STRING_SIZE_TUPLE("eq"), 2, 2, 1, func_eq},
{ STRING_SIZE_TUPLE("not"), 0, 1, 1, func_not},
#endif
};

Each line defines a single function and consists of five pieces of infor-
mation: the name of the function, the minimum number of arguments that
the function must have, the maximum number of arguments (specifying a
maximum of zero with a non-zero minimum means that the function can

Pushing the Envelope 177

have an unlimited number of arguments), whether the arguments should
be expanded, and the name of the C function that actually performs the
function.

For example, here’s the definition of the findstring function:

{ STRING_SIZE_TUPLE("findstring"), 2, 2, 1, func_findstring},

findstring has a minimum of two arguments and a maximum of two,
and the arguments should be expanded before calling the C function
func_findstring. func_findstring (in function.c at line 819) does the work:

static char*
func_findstring (char *o, char **argv, const char *funcname UNUSED)
{
/* Find the first occurrence of the first string in the second. */
if (strstr (argv[1], argv[0]) != 0)
 o = variable_buffer_output (o, argv[0], strlen (argv[0]));

return o;
}

The C functions that implement GNU make built-in functions have
three arguments: o (a pointer to a buffer into which output of the function
should be written), argv (the arguments of the function as a null-terminated
array of strings), and funcname (a string containing the name of the function;
most functions don’t need this, but it can be helpful if one C routine handles
more than one GNU make function).

You can see that func_findstring just uses the standard C library strstr
function to find the presence of its second argument (in argv[1]) in its first
(in argv[0]).

func_findstring uses a handy GNU make C function called variable_buffer_
output (defined in expand.c at line 57). variable_buffer_output copies a string
into the output buffer o of a GNU make function. The first argument should
be the output buffer, the second the string to copy, and the last the amount
of the string to copy.

func_findstring either copies all of its first argument (if the strstr was
successful) or leaves o untouched (and hence, empty, because it is initial-
ized to an empty string before func_findstring is called).

With that, we have enough information to start making our own GNU
make function.

Reverse a String
There’s no easy way to reverse a string in GNU make, but it’s easy to write a
C function that does and insert it into GNU make.

First, we’ll add the definition of reverse to the list of functions that
GNU make knows about. reverse will have a single argument that must be
expanded and will call a C function named func_reverse.

178 Chapter 5

Here’s the entry to add to the function_table_init[]:

{ STRING_SIZE_TUPLE("reverse"), 1, 1, 1, func_reverse},

Now we can define func_reverse, which reverses the string in argv[0]
by swapping characters and then updates the output buffer o, as shown in
Listing 5-4:

static char*
func_reverse(char *o, char **argv, const char *funcname UNUSED)
{
int len = strlen(argv[0]);
if (len > 0) {
 char * p = argv[0];
 int left = 0;
 int right = len - 1;
 while (left < right) {
 char temp = *(p + left);
 *(p + left) = *(p + right);
 *(p + right) = temp;
 left++;
 right--;
 }

 o = variable_buffer_output(o, p, len);
}

return o;
}

Listing 5-4: Defining a GNU make function using C

This function works by walking from the start and end of the string at
the same time and swapping pairs of characters until left and right meet
in the middle.

To test it, we can write a little makefile that tries three possibilities: an
empty string, a string with even length, and a string with odd length, all
calling the new built-in function reverse:

EMPTY :=

$(info Empty string: [$(reverse $(EMPTY))]);

EVEN := 1234
$(info Even length string: [$(reverse $(EVEN))]);

ODD := ABCDE
$(info Odd length string: [$(reverse $(ODD))]);

Pushing the Envelope 179

The output shows that it works correctly:

$./make
Empty string: []
Even length string: [4321]
Odd length string: [EDCBA]

Writing in C gives you access to the full range of C library functions;
therefore, the GNU make built-in functions you can create are limited only
by your imagination.

GNU make 4.0 Loadable Objects
Adding the reverse function to GNU make was fairly complex because we had
to modify GNU make’s source code. But using GNU make 4.0 or later, you can
add C functions to GNU make without changing the source code. GNU make 4.0
added a load directive you can use to load a shared object containing GNU
make functions written in C.

You can turn the reverse function from Listing 5-4 into a loadable GNU
make object by saving it in a file called reverse.c with some small modifica-
tions. Here’s the complete reverse.c file:

#include <string.h>
#include <gnumake.h>

u int plugin_is_GPL_compatible;

char* func_reverse(const char *nm, unsigned int argc, char **argv)
{
 int len = strlen(argv[0]);
 if (len > 0) {

v char * p = gmk_alloc(len+1);
 *(p+len) = '\0';
 int i;
 for (i = 0; i < len; i++) {
 *(p+i) = *(argv[0]+len-i-1);
 }
 return p;
 }

 return NULL;
}

int reverse_gmk_setup()
{

w gmk_add_function("reverse", func_reverse, 1, 1, 1);
 return 1;
}

180 Chapter 5

The reverse function is added to GNU make by the call to gmk_add_function
at w. The function reverse is then available to use just like any other
GNU make built-in function. The actual reversing of a string is handled
by func_reverse, which calls a GNU make API function gmk_alloc to allocate
space for the new string at v.

At u is a special, unused variable called plugin_is_GPL_compatible, which
is required in any loadable module.

To use the new reverse function, you need to compile the reverse.c file
into a .so file and load it into GNU make:

all:
--snip--

load reverse.so

x reverse.so: reverse.c ; @$(CC) -shared -fPIC -o $@ $<

The load directive loads the .so, and the rule at x builds the .so from
the .c file. If the .so file is missing when GNU make encounters the load
directive, GNU make builds it (using the rule) and then restarts, parsing the
makefile from the beginning.

Once loaded, you can use reverse as follows:

A_PALINDROME := $(reverse saippuakivikauppias)

Notice that it is not necessary to use $(call). The reverse function is just
like any other built-in GNU make function.

Using Guile in GNU make
GNU make 4.0 introduced a big change with the $(guile) function. This func-
tion’s argument is sent to the built-in Guile language and is executed by it.
(GNU Guile is an implementation of Scheme, which itself is Lisp.) $(guile)’s
return value is the return value from the Guile code that was executed after
converting to a type that GNU make recognizes. Strictly speaking, GNU make
doesn’t have data types (everything is a string), although it sometimes treats
strings as other types (for example, a string with spaces in it is treated as a
list by many functions).

Here’s how to reverse a list using $(guile) and the Guile function reverse:

NAMES := liesl friedrich louisa kurt brigitta marta gretl

u $(info $(guile (reverse '($(NAMES)))))

When run, this makefile will output:

$ make
gretl marta brigitta kurt louisa friedrich liesl

Pushing the Envelope 181

It’s worth diving into u to see what happens, because there are a couple
of subtle points. The argument to $(guile) is first expanded by GNU make,
so u becomes:

$(info $(guile (reverse '(liesl friedrich louisa kurt brigitta marta gretl))))

So the Guile code to be executed is (reverse '(liesl friedrich louisa kurt
brigitta marta gretl)). The GNU make variable $(NAMES) has been expanded
into the list of names and is turned into a Guile list by wrapping it in '(...).
Because Guile has data types, you must use the correct syntax: in this case,
you need to surround a list with parentheses and quote it with a single quote
to tell Guile that this is a literal list (not a function invocation).

The Guile reverse function reverses this list and returns the reversed
list. GNU make then converts the Guile list into a GNU make list (a string with
spaces in it). Finally, $(info) displays the list.

Because Guile is a rich language, it’s possible to create more complex
functions. Here, for example, is a GNU make function called file-exists
that uses the Guile access? function to determine whether a file exists. It
returns a Boolean value after converting the Guile #t/#f (true/false) value
returned by access? to a GNU make Boolean (a non-empty string for true or
an empty string for false):

file-exists = $(guile (access? "$1" R_OK))

Notice the double quotes around the parameter $1. Guile needs to
know that the filename is actually a string.

You can build a more complex example by using the Guile http-get
function to download data from the Web inside a makefile:

define setup
(use-modules (web uri))
(use-modules (web client))
(use-modules (ice-9 receive))
endef

$(guile $(setup))

UA := "Mozilla/5.0 (Macintosh; Intel Mac OS X 10_10_0) \
AppleWebKit/537.36 (KHTML, like Gecko) Chrome/40.0.2214.115 \
Safari/537.36"

define get-url
(receive (headers body)
 (http-get
 (string->uri "$1")
 #:headers '((User-Agent . $(UA))))
 body)
endef

182 Chapter 5

utc-time = $(guile $(call get-url,http://www.timeapi.org/utc/now))

$(info $(utc-time))

Here, http-get gets the current UTC time from a web service that returns
the time as a string in the body of the HTTP response.

The utc-time variable contains the current UTC time. It works by retriev-
ing the time from http://www.timeapi.org/utc/now/ using the Guile code stored
in the get-url variable. The Guile code in get-url uses the http-get function
to retrieve the header and body of a web page, and returns just the body.

Notice how you can use the GNU make define directive to create large
blocks of Guile code. If the Guile code becomes unwieldy, do this:

$(guile (load "myfunctions.scm"))

This is how you can store the Guile code in a file and load it.

Self-Documenting Makefiles
Upon encountering a new makefile, many ask “What does this makefile
do?” or “What are the important targets I need to know about?” For any
sizable makefile, answering those questions can be difficult. In this section,
I present a simple GNU make trick that you can use to make a makefile self-
documenting and print out help automatically.

Before I show you how it works, here’s a small example. This makefile
has three targets that the creator thinks you need to know about: all, clean,
and package. They’ve documented the makefile by including some extra
information with each target:

include help-system.mk

all: $(call print-help,all,Build all modules in Banana Wumpus system)
 ...commands for building all ...

clean: $(call print-help,clean,Remove all object and library files)
 ...commands for doing a clean ...

package: $(call print-help,package,Package application-must run all target first)
 ...commands for doing package step ...

For each of the targets needing documentation, the makefile maintainer
has added a call to a user-defined function print-help with two arguments:
the name of the target and a brief description of that target. The call to
print-help doesn’t interfere with the definition of the prerequisites of the
rule because it always returns (or is expanded to) an empty string.

Pushing the Envelope 183

Typing make with this makefile outputs:

$ make
Type 'make help' to get help

and typing make help reveals:

$ make help
Makefile:11: all -- Build all modules in Banana Wumpus system
Makefile:17: clean -- Remove all object and library files
Makefile:23: package -- Package application-must run all target first

make automatically prints the names of the interesting targets and
includes an explanation of what they do, as well as the line number of the
makefile where you can find more information about the commands for
that target.

The interesting work is done by the included makefile help-system.mak.
help-system.mak first defines the user-defined function print-help. print-help
is the function called for each target that needs documenting:

define print-help
$(if $(need-help),$(warning $1 -- $2))
endef

print-help uses GNU make’s $(warning) function to output the appropri-
ate message based on the two parameters passed to it. The first parameter
(stored in $1) is the name of the target, and the second (in $2) is the help
text; they are separated by --. $(warning) writes a message to the console and
returns an empty string; hence, you can safely use print-help in the prereq-
uisite list of a rule.

print-help decides whether it needs to print any message by examin-
ing the need-help variable, which will be the string help if the user specified
help on the make command line, or empty if they did not. In either case, the
expanded value of print-help is an empty string.

need-help determines whether the user entered help on the command line
by examining the built-in variable MAKECMDGOALS, which is a space-separated list
of all the goals specified on the make command line. need-help filters out any
goal that doesn’t match the text help and, hence, is the string help if help was
in MAKECMDGOALS or empty otherwise.

need-help := $(filter help,$(MAKECMDGOALS))

The definition of need-help and print-help are all we need to have make
print out help on each target when run with help on the command line. The
rest of help-system.mak prints the message Type 'make help' to get help when
the user simply types make.

184 Chapter 5

It defines a default goal for the makefile called help, which will be run if
no other goal is specified on the command line:

help: ; @echo $(if $(need-help),,Type \'$(MAKE)$(dash-f) help\' to get help)

This rule will output nothing if the user has asked for help (determined
by the need-help variable), but if not, it will output the message containing
the name of the make program (stored in $(MAKE)) followed by the appropri-
ate parameter to load the makefile. This last part is subtle.

If the makefile that included help-system.mak was simply called Makefile
(or makefile or GNUmakefile), then GNU make would look for it automatically,
and it’s enough to type make help to get help. If it was not, the actual make-
file name needs to be specified with the -f parameter.

This rule uses a variable called dash-f to output the correct command
line. dash-f contains nothing if one of the default makefile names was used,
or it contains -f followed by the correct makefile name:

dash-f := $(if $(filter-out Makefile makefile GNUmakefile, \
$(parent-makefile)), -f $(parent-makefile))

dash-f looks at the value of a variable called parent-makefile, which
contains the name of the makefile that included help-system.mak. If it’s not
a standard name, dash-f returns the name of the parent makefile with the
-f option.

parent-makefile is determined by looking at the MAKEFILE_LIST. MAKEFILE_LIST
is a list of all the makefiles read so far in order. help-system.mak first deter-
mines its own name:

this-makefile := $(call last-element,$(MAKEFILE_LIST))

Then it gets the list of all the other makefiles included by removing
this-makefile (that is, help-system.mak) from the MAKEFILE_LIST:

other-makefiles := $(filter-out $(this-makefile),$(MAKEFILE_LIST))

The final element of other-makefiles will be the parent of help-system.mak:

parent-makefile := $(call last-element,$(other-makefiles))

You use the last-element function to get the last element of a space-
separated list:

define last-element
$(word $(words $1),$1)
endef

last-element returns the last word in a list by getting the word count using
$(words) and returning the word referenced by it. Because GNU make’s lists are
counted from position 1, $(words LIST) is the index of the last element.

Pushing the Envelope 185

Documenting Makefiles with print-help
Documenting makefiles with print-help is easy. Just add the relevant $(call
print-help,target,description) to the prerequisite list for each target you want
to document. If you add the call right next to the commands that are used
for the target, the help system not only prints help but also automatically
points the user to the place in the makefile to look for more information.

It’s also easy to keep the documentation up to date because the descrip-
tion of a target is actually part of the definition of the target, not in a sepa-
rate help list.

The Complete help-system.mak
Finally, here’s the full help_system.mak file:

help: ; @echo $(if $(need-help),,Type \'$(MAKE)$(dash-f) help\' to get help)

need-help := $(filter help,$(MAKECMDGOALS))

define print-help
$(if $(need-help),$(warning $1 -- $2))
endef

define last-element
$(word $(words $1),$1)
endef

this-makefile := $(call last-element,$(MAKEFILE_LIST))
other-makefiles := $(filter-out $(this-makefile),$(MAKEFILE_LIST))
parent-makefile := $(call last-element,$(other-makefiles))

dash-f := $(if $(filter-out Makefile makefile GNUmakefile, \
$(parent-makefile)), -f $(parent-makefile))

Just include help-system.mak to start using this system in makefiles that
could use documentation.

In Chapter 6, we’ll look at a helpful resource, the GMSL project.
Creating GNU make built-in functions is easy, but it does cause a mainte-
nance problem: the next time GNU make is updated, we’ll need to port our
changes to the new version. If we can do what we need with GNU make built-
ins without modifying the source, then makefiles will be more portable.
The GMSL provides lots of additional functionality without modifying the
GNU make source.

6
T h e G N U M a k e

S t a n d a r d L i b r a r y

The GNU Make Standard Library (GMSL) is
a SourceForge-hosted, open source project

that I started to capture common functions
that makefile authors end up writing over

and over again. To prevent makefile writers from
reinventing the wheel, the GMSL implements common
functions, such as reversing lists, uppercasing a string,
or mapping a function across every element of a list.

The GMSL has list and string manipulation functions, a complete inte-
ger arithmetic library, and functions for data structures. Also included are
GNU make implementations of associative arrays, sets, and stacks, as well as
built-in debugging facilities.

In this chapter, you’ll learn how to use the functions of the GMSL in
realistic makefiles. In addition, you’ll see a complete reference for the dif-
ferent categories of GMSL functions. For the latest revision of the GMSL,
visit http://gmsl.sf.net/.

188 Chapter 6

Importing the GMSL
The GMSL is implemented as a pair of makefiles named gmsl and __gmsl.
__gmsl is imported by gmsl, so to include the GMSL in your makefile, just
add this:

include gmsl

You can do this in as many files as you want. To prevent multiple defini-
tions and unintended error messages, the GMSL automatically detects if it
has already been included.

Of course, GNU make must be able to find gmsl and __gmsl. To do that,
GNU make looks for makefiles in a number of places by default, including
/usr/local/include, /usr/gnu/include/, /usr/include, the current directory, and
any directories specified by the GNU make -I (or --include-dirL) command
line option.

A good place to put gmsl and __gmsl is /usr/local/include, where they’ll
be available to all your makefiles.

If GNU make can’t find gmsl or __gmsl, you’ll get the regular GNU make
error message:

Makefile:1: gmsl: No such file or directory

The GMSL uses a little trick to make the location of gmsl completely
flexible. Because gmsl uses include to find __gmsl, the gmsl makefile needs to
know where to find __gmsl.

Let’s suppose that gmsl was stored in /foo and included with include
/foo/gmsl. To make this work without having to modify gmsl to hardcode the
location of __gmsl, gmsl figures out where it’s located using MAKEFILE_LIST and
then prepends the appropriate path to the include __gmsl:

Try to determine where this file is located. If the caller did
include /foo/gmsl then extract the /foo/ so that __gmsl gets
included transparently

__gmsl_root := $(word $(words $(MAKEFILE_LIST)),$(MAKEFILE_LIST))

If there are any spaces in the path in __gmsl_root then give up

ifeq (1,$(words $(__gmsl_root)))
__gmsl_root := $(patsubst %gmsl,%,$(__gmsl_root))
else
__gmsl_root :=
endif

include $(__gmsl_root)__gmsl

That’s a handy technique if you want your makefiles to be location
independent.

The GNU Make Standard Library 189

Calling a GMSL Function
The functions in the GMSL are implemented as normal GNU make function
declarations. For example, the function last (which returns the last element
of a list) is declared like this:

last = $(if $1,$(word $(words $1),$1))

The function is called using GNU make’s built-in $(call). For example, to
return the last element of the list 1 2 3, do this:

$(call last,1 2 3)

This will return 3. $(call) expands the variable named in its first argu-
ment (in this case, last), setting special local variables ($1, $2, $3, . . .)to
the arguments given to $(call) after the function name. So $1 is 1 2 3 in
this case.

The GMSL defines the Boolean values true and false, which are just
variables and can be accessed using $() or ${}: for example, $(true) or
${false}. false is an empty string, and true is the letter T; these definitions
correspond to GNU make’s notion of true (a non-empty string) and false
(an empty string). You can use true and false in GNU make’s $(if) function
or within a preprocessor ifeq:

$(if $(true),It's true!,Totally false)

ifeq ($(true),$(true))
 --snip--
endif

These examples are contrived. You’d expect the $(true) in the $(if) and
the first $(true) in the ifeq to be the return values from a function call, not
a constant value.

Checking the GMSL Version
The GMSL includes a function that you can use to check that the ver-
sion included is compatible with your use of the GMSL. The function
gmsl_compatible checks that the version number of the included GMSL is
greater than or equal to the version number passed as an argument.

At the time of this writing, the current GMSL version is v1.1.7. To check
that the included GMSL is at least, say, v1.1.2, call gmsl_compatible with a list
argument containing three elements: 1 1 2.

$(call gmsl_compatible,1 1 2)

190 Chapter 6

This will return $(true) because the current GMSL is v1.1.7, which is
greater than v1.1.2. If we asked for v2.0.0, we’d get the response $(false):

$(call gmsl_compatible,2 0 0)

A simple way to make sure that you are using the right version of GMSL
is to wrap the call to gmsl_compatible in an assertion:

$(call assert,$(call gmsl_compatible,1 0 0),Wrong GMSL version)

This will stop the make process with an error if an incompatible version
of GMSL is found.

Example Real-World GMSL Use
Now that you’re set up with the GMSL, let’s look at some examples. All of
these solve problems that real-world makefiles have to deal with, like case-
insensitive comparisons and searching a path for a file.

Case-Insensitive Comparison
GMSL contains two functions that let you create a simple function to do a
case-insensitive comparison of two strings:

ifcase = $(call seq,$(call lc,$1),$(call lc,$2))

This works by lowercasing its two arguments (using the GMSL lc func-
tion) and then calling seq (the GMSL string equality function) to see if they
are the same. Here’s one way to use ifcase:

CPPFLAGS += $(if $(call ifcase,$(DEBUG),yes),-DDEBUG,)

Here it’s used to see if the DEBUG variable has been set to yes; if it has,
-DDEBUG is added to CPPFLAGS.

Finding a Program on the Path
Here’s a function definition that will search the PATH for an executable:

findpath = $(call first,$(call map,wildcard,$(call addsuffix,/$1,$(call split,:,$(PATH)))))

For example, $(call findpath,cat) will search the PATH for the first cat
program. It uses three functions from the GMSL: first, map, and split. It
uses two built-in functions: wildcard and addsuffix.

The call to split breaks the PATH variable into a list, separating it at
colons. Then the built-in addsuffix function is called, which adds /$1 to
each element of the PATH. $1 contains the parameter to findpath, which is
the name of the program we’re searching for (in this case, it was cat).

The GNU Make Standard Library 191

Then the GMSL map function is called to perform a built-in wildcard on
each possible program filename. With no wildcard characters in the file-
name, wildcard will return the name of the file if it exists or an empty string.
So map has the effect of finding the location (or locations) of cat on the PATH
by testing each file in turn.

Finally, a call to the GMSL function first returns the first element of
the list that map returns (the list of all cat programs on the PATH).

A debugging feature of GMSL is the ability to trace calls to GMSL func-
tions. By setting GMSL_TRACE to 1, GMSL will output each call to a GMSL function
with its parameters. For example:

Makefile:8: split(':', '/home/jgc/bin:/usr/local/bin:/usr/bin:/usr/X11R6/bin:/
bin:/usr/games:/opt/gnome/bin:/opt/kde3/bin:/usr/lib/java/jre/bin')
Makefile:8: map('wildcard',' /home/jgc/bin/make /usr/local/bin/make /usr/bin/
make /usr/X11R6/bin/make /bin/make /usr/games/make /opt/gnome/bin/make /opt/
kde3/bin/make /usr/lib/java/jre/bin/make')
Makefile:8: first(' /usr/bin/make')

Here we’re searching for cat using the findpath function with tracing
turned on.

Using Assertions to Check Inputs
Typically, a makefile is executed specifying a goal for the build (or under
the assumption that there’s an all target or similar at the start of the make-
file). In addition, there are typically environment variables (like debug
options, architecture settings, and so on) that affect the build. A quick
way to check that these have been set correctly is to use GMSL assertion
functions.

Here’s an example that checks that DEBUG has been set to yes or no, that
ARCH contains the word Linux, that we’ve specified an output directory in the
OUTDIR variable, and that that directory exists:

$(call assert,$(OUTDIR),Must set OUTDIR)
$(call assert_exists,$(OUTDIR),Must set OUTDIR)
$(call assert,$(if $(call seq,$(DEBUG),yes),$(true),$(call seq,$(DEBUG),no)),DEBUG must be yes or no)
$(call assert,$(call findstring,Linux,$(ARCH)),ARCH must be Linux)

The assertion functions will generate a fatal error if their first argu-
ment is $(false) (that is, an empty string).

The first assert checks that $(OUTDIR) has been set to something. If
it has a non-empty value, the assertion passed; otherwise, an error is
generated:

Makefile:3: *** GNU Make Standard Library: Assertion failure: Must set OUTDIR.
Stop.

192 Chapter 6

The second assertion is of the form assert_exists, which checks to see
whether its first argument exists in the file system. In this case, it checks
to see whether the directory pointed to by $(OUTDIR) exists. It doesn’t check to
see whether it’s a directory. We can add another assertion to do that, like this:

$(call assert,$(wildcard $(OUTDIR)/.),OUTDIR must be a directory)

This looks to see if $(OUTDIR) contains a dot (.). If not, $(OUTDIR) is not a
directory, and the call to wildcard will return an empty string, causing the
assertion to fail.

The third assertion checks that DEBUG is either yes or no using the GMSL
seq function to check the value. Finally, we assert using findstring that $(ARCH)
must contain the word Linux (with the L capitalized).

Is DEBUG Set to Y?
The GMSL has the logical operators and, or, xor, nand, nor, xnor, and not
that work with GNU make’s concept of truth values and the GMSL variables
$(true) and $(false).

You can use GNU make’s (and GMSL’s) Boolean values with both GMSL
functions and GNU make’s built-in $(if). The GMSL logical operators were
designed for use with $(if) and the GNU make preprocessor ifeq directive.

Imagine that a makefile has a debug option, enabled by setting the
DEBUG environment variable to Y. Using the GMSL function seq (string
equal) and the or operator, you can easily determine whether debugging
is desired or not:

include gmsl

debug_needed := $(call or,$(call seq,$(DEBUG),Y),$(call seq,$(DEBUG),y))

Because the GMSL has a lowercase function (lc), you can write this
example without the or:

include gmsl

debug_needed := $(call seq,$(call lc,$(DEBUG)),y)

But the logical operator or lets us be even more generous and accept YES
as well as Y for the debug option:

include gmsl

debug_needed := $(call or,$(call seq,$(call lc,$(DEBUG)),y),$(call seq,$(call lc,$(DEBUG)),yes))

The function debug_needed is case insensitive too.

The GNU Make Standard Library 193

Is DEBUG Set to Y or N?
Another possible use of the logical operators is to force the user of the
makefile to set DEBUG to either Y or N, thus avoiding problems if they forget
about the debug option. The GMSL assertion function assert will output
a fatal error if its argument is not true. So we can use it to assert that DEBUG
must be Y or N:

include gmsl

$(call assert,$(call or,$(call seq,$(DEBUG),Y),$(call seq,$(DEBUG),N)),DEBUG must be Y or N)

Here’s an example:

$ make DEBUG=Oui
Makefile:1: *** GNU Make Standard Library: Assertion failure: DEBUG must be Y
or N. Stop.

The assertion generates this error if the user makes the mistake of set-
ting DEBUG to Oui.

Using Logical Operators in the Preprocessor
Because GNU make’s preprocessor (which has ifeq, ifneq, and ifdef direc-
tives) doesn’t have any logical operations, it’s difficult to write a complex
statement. For example, to define a section of a makefile if DEBUG is set to Y
or Yes in GNU make, you must either duplicate a section of code (yuck!) or
write a statement that’s hard to understand:

ifeq ($(DEBUG),$(filter $(DEBUG),Y Yes))
--snip--
endif

This works by filtering the list Y Yes with the value of $(DEBUG), which
returns an empty list if $(DEBUG) is not Y or Yes, or returns the value of
$(DEBUG) if it is. The ifeq then compares the resulting value with $(DEBUG).
That’s pretty ugly, hard to maintain, and contains a subtle bug. (What hap-
pens if $(DEBUG) is empty? Hint: empty is the same as Y or Yes.) Fixing the
bug means doing something like this:

ifeq (x$(DEBUG)x,$(filter x$(DEBUG)x,xYx xYesx))
--snip--
endif

The GMSL or operator makes this much clearer:

include gmsl

ifeq ($(true),$(call or,$(call seq,$(DEBUG),Y),$(call seq,$(DEBUG),Yes)))
--snip--
endif

194 Chapter 6

This is much more maintainable. It works by oring two calls to seq and
comparing the result with $(true).

Removing Duplicates from a List
The GMSL function uniq removes duplicates from a list. GNU make has a built-
in sort function that sorts a list and removes duplicates; uniq removes dupli-
cates without sorting the list (which can be handy if list order is important).

For example, $(sort c b a a c) will return a b c, whereas $(call uniq,c
b a a c) returns c b a.

Say you need to simplify the PATH variable by removing duplicate entries
while preserving the order. The PATH is typically a colon-separated list of
paths (like /usr/bin:/bin:/usr/local/bin:/bin). Here simple-path is the PATH
with duplicates removed and order preserved:

include gmsl

simple-path := $(call merge,:,$(call uniq,$(call split,:,$(PATH))))

This uses three GMSL functions: uniq, split (which splits a string into a
list at a certain separator character; in this case, a colon), and merge (which
merges a list into a string separating list entries with a character; in this
case, a colon).

Automatically Incrementing a Version Number
When it’s release time for a piece of software, it’s handy to have a way to incre-
ment the version number automatically. Suppose that a project contains a file
called version.c that contains the current version number as a string:

char * ver = "1.0.0";

It would be ideal to just type make major-release, make minor-release, or
make dot-release and have one of the three parts of the version number auto-
matically update and the version.c file change.

Here’s how to do that:

VERSION_C := version.c
VERSION := $(shell cat $(VERSION_C))

space :=
space +=

PARTS := $(call split,",$(subst $(space),,$(VERSION)))

VERSION_NUMBER := $(call split,.,$(word 2,$(PARTS)))
MAJOR := $(word 1,$(VERSION_NUMBER))
MINOR := $(word 2,$(VERSION_NUMBER))
DOT := $(word 3,$(VERSION_NUMBER))

The GNU Make Standard Library 195

major-release minor-release dot-release:
u  @$(eval increment_name := $(call uc,$(subst -release,,$@)))
v  @$(eval $(increment_name) := $(call inc,$($(increment_name))))
w  @echo 'char * ver = "$(MAJOR).$(MINOR).$(DOT)";' > $(VERSION_C)

The VERSION variable contains the contents of the version.c file, which will
be something like char * ver = "1.0.0";. The PARTS variable is a list created
by first removing all the whitespace from VERSION and then splitting on the
double quotes. That splits VERSION into the list char*ver= 1.0.0 ;.

So PARTS is a list with three elements, and the second element is the cur-
rent version number, which is extracted into VERSION_NUMBER and turned into
a list of three elements: 1 0 0.

Next, variables called MAJOR, MINOR, and DOT are extracted from
VERSION_NUMBER. If the version number in version.c was 1.2.3, then MAJOR
will be 1, MINOR will be 2, and DOT will be 3.

Finally, three rules are defined for major, minor, and dot releases.
These use some $(eval) trickery to use the same rule body to update the
major, minor, or dot release number depending on which of major-release,
minor-release, or dot-release was specified on the command line.

To understand how it works, follow what happens when you do make
minor-release with an existing version number of 1.0.0.

The $(eval increment_name := $(call uc,$(subst -release,,$@))) u first
uses $(subst) to remove -release from the target name (so minor-release
becomes simply minor).

Then it calls the GMSL uc function (which uppercases a string) to turn
minor into MINOR. It stores that in a variable called increment-name. Here’s the
tricky part: increment-name will be used as the name of a variable to incre-
ment (one of MAJOR, MINOR, or DOT).

At v, $(eval $(increment_name) := $(call inc,$($(increment_name)))) actually
does that work. It uses the GMSL inc function to increment the value stored in
the variable whose name is in increment-name (notice the $($(increment-name)),
which finds the value of a variable whose name is in another variable) and
then sets that value to the incremented value.

Finally, it just creates a new version.c containing the new version num-
ber w. For example:

$ make -n major-release
echo 'char * ver = "2.0.0";' > version.c
$ make -n minor-release
echo 'char * ver = "1.1.0";' > version.c
$ make -n dot-release
echo 'char * ver = "1.0.1";' > version.c

This is the result of using the -n option when starting from version 1.0.0
and asking for the different possible releases.

196 Chapter 6

GMSL Reference
This section is a complete reference for the GNU Make Standard Library
version 1.1.7 and covers GMSL logical operators; integer functions; list,
string, and set manipulation functions; associative arrays; and named
stacks. For each category of GMSL functions, you’ll see an introduction
to the functions, followed by a quick reference section that lists arguments
and returns. For the latest version of the complete reference, check the
GMSL website at http://gmsl.sf.net/.

If you’re interested in advanced GNU make programming, it’s worth
studying the source code of the GMSL (especially the file __gmsl). The tech-
niques used to create individual GMSL functions are often useful in other
situations.

Logical Operators
GMSL has Booleans $(true), a non-empty string actually set to the single
character T, and $(false), an empty string. You can use the following opera-
tors with those variables or with functions that return those values.

Although these functions are consistent in that they always return
$(true) or $(false), they are lenient about accepting any non-empty string
that indicates true. For example:

$(call or,$(wildcard /tmp/foo),$(wildcard /tmp/bar))

This tests for the existence of either of two files, /tmp/foo and /tmp/bar,
using $(wildcard) and the GMSL or function. Doing $(wildcard /tmp/foo) will
return /tmp/foo if the file exists or an empty string if not. So the output of
the $(wildcard /tmp/foo) can be fed directly into or, where /tmp/foo will be
interpreted as true and an empty string as false.

If you feel more comfortable working exclusively with values like $(true)
and $(false), define a make-bool function like this:

make-bool = $(if $(strip $1),$(true),$(false))

This will turn any non-empty string (after stripping off whitespace)
into $(true) and leave a blank string (or one that had only whitespace in it)
as $(false). make-bool can be handy when whitespace might slip into values
returned by functions.

For example, here’s a small GNU make variable that is $(true) if the cur-
rent month is January:

january-now := $(call make-bool,$(filter Jan,$(shell date)))

This runs the date shell command, extracts the word Jan, and turns it
into a truth value using make-bool. Using $(filter) like this treats the result
of date as a list and then filters out any word in the list that is not Jan. This
technique can be handy in other situations for extracting parts of a string.

The GNU Make Standard Library 197

You can make a generic function to discover if a list contains a word:

contains-word = $(call make-bool,$(filter $1,$2))
january-now := $(call contains-word,Jan,$(shell date))

Using contains-word, you can redefine january-now.

not

The GMSL includes all the common logical operators. The simplest is the
not function, which logically negates its argument:

not

Argument: A single boolean value
Returns: $(true) if the boolean is $(false) and vice versa

For example, $(call not,$(true)) returns $(false).

and

The and function returns $(true) if (and only if) both its arguments are true:

and

Arguments: Two boolean values
Returns: $(true) if both of the arguments are $(true)

For example, $(call and,$(true),$(false)) returns $(false).

or

The or function returns $(true) if either of its arguments is true:

or

Arguments: Two boolean values
Returns: $(true) if either of the arguments is $(true)

For example, $(call or,$(true),$(false)) returns $(true).

xor

The xor function is exclusive or:

xor

Arguments: Two boolean values
Returns: $(true) if exactly one of the booleans is true

For example, $(call xor,$(true),$(false)) returns $(true).

198 Chapter 6

nand

nand is simply not and:

nand

Arguments: Two boolean values
Returns: Value of 'not and'

For example, $(call nand,$(true),$(false)) returns $(true) where
$(call and,$(true),$(false)) returns $(false).

nor

nor is simply not or:

nor

Arguments: Two boolean values
Returns: Value of 'not or'

For example, $(call nor,$(true),$(false)) returns $(false) where
$(call or,$(true),$(false)) returns $(true).

xnor

The rarely used xnor is not xor:

xnor

Arguments: Two boolean values
Returns: Value of 'not xor'

Note that the GMSL logical functions and and or are not short circuiting;
both of the arguments to those functions are expanded before performing
the logical and or or. GNU make 3.81 introduced built-in and and or functions
that are short circuiting: they evaluate their first argument and then decide
whether it’s necessary to evaluate their second.

Integer Arithmetic Functions
In Chapter 5, you saw how to perform arithmetic inside GNU make by repre-
senting non-negative integers as lists of xs. For example, 4 is x x x x. GMSL
uses the same representation for integers and provides a wide range of
functions for integer calculations.

The arithmetic library functions come in two forms: one form of each
function takes integers as arguments, and the other form takes encoded
arguments (xs created by a call to int_encode). For example, there are two
plus functions: plus (called with integer arguments, returns an integer) and
int_plus (called with encoded arguments, returns an encoded result).

The GNU Make Standard Library 199

plus will be slower than int_plus because its arguments and result must
be translated between the x format and integers. If you’re doing a complex
calculation, use the int_* forms with a single encoding of inputs and single
decoding of the output. For simple calculations, you can use the direct
forms.

int_decode

The int_decode function takes a number in x-representation and returns the
decimal integer that it represents:

int_decode

Arguments: 1: A number in x-representation
Returns: The integer for human consumption that is represented
 by the string of x's

int_encode

int_encode is the opposite of int_decode: it takes a decimal integer and
returns the x-representation:

int_encode

Arguments: 1: A number in human-readable integer form
Returns: The integer encoded as a string of x's

int_plus

int_plus adds two numbers in x-representation together and returns their
sum in x-representation:

int_plus

Arguments: 1: A number in x-representation
 2: Another number in x-representation
Returns: The sum of the two numbers in x-representation

plus

To add decimal integers, use the plus function, which converts to and from
x-representation and calls int_plus:

plus (wrapped version of int_plus)

Arguments: 1: An integer
 2: Another integer
Returns: The sum of the two integers

200 Chapter 6

int_subtract

int_subtract subtracts two numbers in x-representation and returns the dif-
ference in x-representation:

int_subtract

Arguments: 1: A number in x-representation
 2: Another number in x-representation
Returns: The difference of the two numbers in x-representation,
 or outputs an error on a numeric underflow

If the difference will be less than 0 (which can’t be represented), an
error occurs.

subtract

To subtract decimal integers, use the subtract function, which converts to
and from x-representation and calls int_subtract:

subtract (wrapped version of int_subtract)

Arguments: 1: An integer
 2: Another integer
Returns: The difference of the two integers, or outputs an error on a
 numeric underflow

If the difference will be less than 0 (which can’t be represented), an
error occurs.

int_multiply

int_multiply multiplies two numbers that are in x-representation:

int_multiply

Arguments: 1: A number in x-representation
 2: Another number in x-representation
Returns: The product of the two numbers in x-representation

multiply

multiply will multiply two decimal integers and return their product. It auto-
matically converts to and from x-representation and calls int_multiply:

multiply (wrapped version of int_multiply)

Arguments: 1: An integer
 2: Another integer
Returns: The product of the two integers

The GNU Make Standard Library 201

int_divide

int_divide divides one number by another; both are in x-representation, as is
the result:

int_divide

Arguments: 1: A number in x-representation
 2: Another number in x-representation
Returns: The result of integer division of argument 1 divided
 by argument 2 in x-representation

divide

The divide function calls int_divide to divide two decimal integers, automat-
ically converting to and from x-representation:

divide (wrapped version of int_divide)

Arguments: 1: An integer
 2: Another integer
Returns: The integer division of the first argument by the second

int_max and int_min

int_max and int_min return the maximum and minimum, respectively, of two
numbers in x-representation:

int_max, int_min

Arguments: 1: A number in x-representation
 2: Another number in x-representation
Returns: The maximum or minimum of its arguments in x-representation

max and min

The decimal integer equivalents of int_max and int_min are max and min; they
automatically convert to and from x-representation:

max, min

Arguments: 1: An integer
 2: Another integer
Returns: The maximum or minimum of its integer arguments

202 Chapter 6

int_inc

int_inc is a small helper function that just adds one to an x-representation
number:

int_inc

Arguments: 1: A number in x-representation
Returns: The number incremented by 1 in x-representation

inc

The inc function adds one to a decimal integer:

inc

Arguments: 1: An integer
Returns: The argument incremented by 1

int_dec

The opposite of int_inc is int_dec: it decreases a number by one:

int_dec

Arguments: 1: A number in x-representation
Returns: The number decremented by 1 in x-representation

dec

The dec function decrements a decimal integer by one:

dec

Arguments: 1: An integer
Returns: The argument decremented by 1

int_double

The double and halve functions (and their int_double and int_halve equiva-
lents) are provided for performance reasons. If you’re multiplying by two
or dividing by two, these functions will be faster than multiplication and
division.

int_double will double an integer:

int_double

Arguments: 1: A number in x-representation
Returns: The number doubled (* 2) and returned in x-representation

The GNU Make Standard Library 203

double

double will double a decimal integer:

double

Arguments: 1: An integer
Returns: The integer times 2

Internally, it converts to x-representation and calls int_double.

int_halve

You can perform an integer division by two by calling int_halve on an
x-representation number:

int_halve

Arguments: 1: A number in x-representation
Returns: The number halved (/ 2) and returned in x-representation

halve

Finally, there’s halve:

halve

Arguments: 1: An integer
Returns: The integer divided by 2

This is the decimal integer equivalent of int_halve.

Integer Comparison Functions
All the integer comparison functions return $(true) or $(false):

int_gt, int_gte, int_lt, int_lte, int_eq, int_ne

Arguments: Two x-representation numbers to be compared
Returns: $(true) or $(false)

int_gt First argument is greater than second argument
int_gte First argument is greater than or equal to second argument
int_lt First argument is less than second argument
int_lte First argument is less than or equal to second argument
int_eq First argument is numerically equal to the second argument
int_ne First argument is not numerically equal to the second argument

These can be used with GNU make and GMSL functions as well as with
directives that expect Boolean values (such as the GMSL logical operators).

204 Chapter 6

But you are more likely to use these versions of the comparison
functions:

gt, gte, lt, lte, eq, ne

Arguments: Two integers to be compared
Returns: $(true) or $(false)

gt First argument is greater than second argument
gte First argument is greater than or equal to second argument
lt First argument is less than second argument
lte First argument is less than or equal to second argument
eq First argument is numerically equal to the second argument
ne First argument is not numerically equal to the second argument

These operate on decimal integers, not the internal x-representation
that GMSL uses.

Miscellaneous Integer Functions
Most likely, you’re not going to need to do anything advanced with GNU
make arithmetic, but the miscellaneous functions detailed here do base con-
versions and generation of numeric sequences. They can, on occasion, be
useful.

sequence

You use the sequence function to generate a sequence of numbers:

sequence

Arguments: 1: An integer
 2: An integer
Returns: The sequence [arg1 arg2] if arg1 >= arg2 or [arg2 arg1] if arg2 > arg1

For example, $(call sequence,10,15) will be the list 10 11 12 13 14 15.
To create a decreasing sequence, you invert the parameters to sequence. For
example, $(call sequence,15,10) will be the list 15 14 13 12 11 10.

dec2hex, dec2bin, and dec2oct

The dec2hex, dec2bin, and dec2oct functions perform conversion between
decimal numbers and hexadecimal, binary, and octal forms:

dec2hex, dec2bin, dec2oct

Arguments: 1: An integer
Returns: The decimal argument converted to hexadecimal, binary or octal

For example, $(call dec2hex,42) will be 2a.

The GNU Make Standard Library 205

No options are available for padding with leading zeroes. If that’s nec-
essary, you can use GMSL string functions. For example, here’s a padded
version of dec2hex that takes two parameters: a decimal number to be con-
verted to hexadecimal and the number of digits to output:

__repeat = $(if $2,$(call $0,$1,$(call rest,$2),$1$3),$3)

repeat = $(call __repeat,$1,$(call int_encode,$2),)

This works by defining some helper functions. First, repeat creates a
string consisting of a number of copies of another string. For example,
$(call repeat,10,A) will be AAAAAAAAAA.

Some subtle things are happening in this definition. The repeat func-
tion calls __repeat with three parameters: $1 is the string to be repeated, $2
is the number of times to repeat $1, and $3 has been set to a blank string by
the trailing comma in the $(call) to __repeat. The $0 variable contains the
name of the current function; in __repeat it will be __repeat.

The __repeat function is recursive and uses the $2 as the recursion
guard. The repeat function converts the number of desired repeats into the
x-representation used by GMSL arithmetic functions and passes it to __repeat.
For example, $(call repeat,Hello,5) turns into $(call __repeat,Hello,x x x x
x,), and __repeat chops an x off $2 each time around until $2 is empty.

With repeat written, we just need a way to pad a string to some number
of characters with a padding character. The function pad achieves that:

pad = $(call repeat,$1,$(call subtract,$2,$(call strlen,$3)))$3

paddeddec2hex = $(call pad,0,$2,$(call dec2hex,$1))

Its three arguments are the character to pad with, the total width
of the padded output in character, and the string to pad. For example,
$(call pad,0,4,2a) would return 002a. From that, a padded dec2hex can easily
be defined. It takes two parameters: the first is the decimal number to con-
vert to hexadecimal, and the second is the number of characters to pad to.

As you’d expect, $(call paddeddec2hex,42,8) returns 0000002a.

List Manipulation Functions
In GNU make and GMSL terms, a list is a string of characters that has white
space as separators. Both the GNU make built-in functions that work on lists
and the GMSL functions treat multiple whitespaces as a single space. So the
lists 1 2 3 and 1 2 3 are the same.

I’ll explain a few of the list manipulation functions in detail in the fol-
lowing sections. These functions are more complicated than the others in
their use, and they’re typically available in functional languages.

206 Chapter 6

Applying a Function to a List with map

When you’re working with GNU make functions (either built-ins or your
own), you’re actually programming in a simple functional language. In
functional programming, it’s common to have a map function that applies
a function to every element of a list. GMSL defines map to do exactly that.
For example:

SRCS := src/FOO.c src/SUBMODULE/bar.c src/foo.c
NORMALIZED := $(call uniq,$(call map,lc,$(SRCS)))

Given a list of filenames (perhaps with paths specified) in SRCS, this will
ensure that all the filenames are lowercased and then apply the uniq func-
tion to get a unique list of source files.

This uses the GMSL function lc to lowercase each filename in SRCS.
You can use the map function with both built-in and user-defined functions.
Here, NORMALIZED would be src/foo.c src/submodule/bar.c.

Another use of map might be to get the size of every source file:

size = $(firstword $(shell wc -c $1))

SOURCE_SIZES := $(call map,size,$(SRCS))

Here we define a size function that uses $(shell) to call wc, and then we
apply it to every file in SRCS.

Here SOURCE_SIZES might be something like 1538 1481 with one element
for each source file.

Making a reduce Function

Another common function in functional languages is reduce. reduce applies
a function that takes two parameters to successive elements of a list, feed-
ing the return value from the function into the next call to it. The GMSL
doesn’t have a built-in reduce function, but you can easily define it:

reduce = $(if $2,$(call $0,$1,$(call rest,$2),$(call $1,$3,$(firstword $2))),$3)

Summing a List of Numbers Using reduce

Combining reduce with the plus function, you can easily make a GNU make
function that sums a list of numbers:

sum-list = $(call reduce,plus,$1,0)

The sum-list function takes a single parameter, a list of numbers, and
returns the sum of those numbers. It passes three things to reduce: the
name of the function to call for each element of the list (in this case, plus),
the list of numbers, and a starting number (in this case, 0).

The GNU Make Standard Library 207

Here’s how it works. Suppose $(call sum-list,1 2 3 4 5) is called. The
following sequence of calls to plus will be performed:

$(call plus,1,0) which returns 1
$(call plus,1,2) which returns 3
$(call plus,3,3) which returns 6
$(call plus,6,4) which returns 10
$(call plus,10,5) which returns 15

The first call uses the first element of the list and the starting number 0.
Each subsequent call uses the next element from the list and the last result
of calling plus.

You could combine sum-list with the SOURCE_SIZES variable to get the
total size of the source code:

TOTAL_SIZE := $(call sum-list,$(SOURCE_SIZES))

In this case, TOTAL_SIZE would be 3019.

Mapping a Function Across a Pair of Lists

The other interesting function that GMSL defines for lists is pairmap. It takes
three arguments: two lists (which should be the same length) and a func-
tion. The function is applied to the first element of each list, the second ele-
ment, the third element, and so on.

Suppose SRCS contains a list of source files. Using the size function we
defined, combined with map, we defined SOURCE_SIZES, which contains a list of
the sizes of each source file. Using pairmap, we can zip the two lists together
to output the name of each file and its size:

zip = $1:$2

SOURCES_WITH_SIZES := $(call pairmap,zip,$(SRCS),$(SOURCE_SIZES))

The zip function is applied to each source filename and size in turn,
and makes a string separating the filename and its size with a colon. Using
our example files and sizes from this section, SOURCES_WITH_SIZES would be
src/foo.c:1538 src/submodule/bar.c:1481.

first

first takes in a list and returns its first element:

first

Arguments: 1: A list
Returns: Returns the first element of a list

Note that first is identical to the GNU make function $(firstword).

208 Chapter 6

last

The last function returns the final element of a list:

last

Arguments: 1: A list
Returns: The last element of a list

GNU make 3.81 introduced $(lastword), which works the same way last does.

rest

The rest function is almost the opposite of first. It returns everything but
the first element of a list:

rest

Arguments: 1: A list
Returns: The list with the first element removed

chop

To remove the last element of a list, use the chop function:

chop

Arguments: 1: A list
Returns: The list with the last element removed

map

The map function iterates over a list (its second argument) and calls a func-
tion (named in its first argument) on each list element. The list of values
returned by each call to the named function is returned:

map

Arguments: 1: Name of function to $(call) for each element of list
 2: List to iterate over calling the function in 1
Returns: The list after calling the function on each element

pairmap

pairmap is similar to map but iterates over a pair of lists:

pairmap

Arguments: 1: Name of function to $(call) for each pair of elements
 2: List to iterate over calling the function in 1
 3: Second list to iterate over calling the function in 1
Returns: The list after calling the function on each pair of elements

The GNU Make Standard Library 209

The function in the first argument is called with two arguments: one
element from each of the lists being iterated over.

leq

The leq list equality testing function will correctly return $(true) for lists
that are identical other than having different whitespace:

leq

Arguments: 1: A list to compare against...
 2: ...this list
Returns: $(true) if the two lists are identical

For example, leq considers 1 2 3 and 1 2 3 to be the same list.

lne

lne is the opposite of leq: it returns $(true) when two lists are not equal:

lne

Arguments: 1: A list to compare against...
 2: ...this list
Returns: $(true) if the two lists are different

reverse

To reverse a list can be useful (particularly because it can then be fed into
$(foreach) and iterated backward).

reverse

Arguments: 1: A list to reverse
Returns: The list with its elements in reverse order

uniq

The built-in $(sort) function will deduplicate a list, but it does so at the
same time as sorting it. The GMSL uniq function deduplicates a list while
preserving the order in which elements are first found:

uniq

Arguments: 1: A list to deduplicate
Returns: The list with elements in the original order but without duplicates

For example, $(call uniq,a c b a c b) will return a c b.

210 Chapter 6

length

To find out the number of elements in a list, call length:

length

Arguments: 1: A list
Returns: The number of elements in the list

The length function is the same as the GNU make $(words) function.

String Manipulation Functions
A string is a sequence of any characters, including whitespace. The string
equality (and string inequality) function seq works even with strings that
contain whitespace or consist only of whitespace. For example:

space contains the space character

space :=
space +=

tab contains a tab

tab := # needed to protect the tab character

$(info $(call seq,White Space,White Space))
$(info $(call seq,White$(space)Space,White Space))
$(info $(call sne,White$(space)Space,White$(tab)Space))
$(info $(call seq,$(tab),$(tab)))
$(info $(call sne,$(tab),$(space)))

This outputs T five times, indicating that each call to seq or sne returned
$(true).

As with the list manipulation functions, I’ll cover a few of the more
complicated functions in detail in the following sections.

Splitting CSV Data into a GNU make List

You can use the split function to turn a value in CSV format into a GNU
make list. For example, splitting on a comma turns a CSV line into a list from
which individual items can be extracted:

CSV_LINE := src/foo.c,gcc,-Wall

comma := ,
FIELDS := $(call split,$(comma),$(CSV_LINE))

$(info Compile '$(word 1,$(FIELDS))' using compiler '$(word 2,$(FIELDS))' with \
options '$(word 3,$(FIELDS))')

The GNU Make Standard Library 211

Notice how the variable comma is defined to contain a comma character
so it can be used in the $(call) to the split function. This trick was discussed
in Chapter 1.

Making a PATH from a List of Directories

The merge function does the opposite of split: it makes a string from a list
by separating the list items by some character. For example, to turn a list of
directories into a form suitable for the PATH (which is usually separated by
colons), define list-to-path as follows:

DIRS := /usr/bin /usr/sbin /usr/local/bin /home/me/bin

list-to-path = $(call merge,:,$1)

$(info $(call list-to-path,$(DIRS)))

This outputs /usr/bin:/usr/sbin:/usr/local/bin:/home/me/bin.

Translating Characters Using tr

The most complicated string function is tr, which operates like the tr shell
program. It transforms each character from a collection of characters into a
corresponding character in a second list. The GMSL defines some common
character classes for use with tr. For example, it defines variables called
[A-Z] and [a-z] (yes, those are really the names) that contain the uppercase
and lowercase characters.

We can use tr to make a function that translates to leet-speak:

leet = $(call tr,A E I O L T,4 3 1 0 1 7,$1)

$(info $(call leet,I AM AN ELITE GNU MAKE HAXOR))

This outputs 1 4M 4N 31173 GNU M4K3 H4X0R.

seq

The slightly confusingly named seq function tests whether two strings are
equal:

seq

Arguments: 1: A string to compare against...
 2: ...this string
Returns: $(true) if the two strings are identical

212 Chapter 6

sne

The opposite, string inequality, is tested with sne:

sne

Arguments: 1: A string to compare against...
 2: ...this string
Returns: $(true) if the two strings are not the same

streln

The length function gets the length of a list; the equivalent for strings is
strlen:

strlen

Arguments: 1: A string
Returns: The length of the string

substr

It’s possible to extract a substring using the substr function:

substr

Arguments: 1: A string
 2: Starting offset (first character is 1)
 3: Ending offset (inclusive)
Returns: A substring

Note that in GMSL, strings start from position 1, not 0.

split

To split a string into a list, you use the split function:

split

Arguments: 1: The character to split on
 2: A string to split
Returns: A list separated by spaces at the split character in the
 first argument

Note that if the string contains spaces, the result may not be as expected.
GNU make’s use of spaces as the list delimiter makes working with spaces and
lists together very difficult. See Chapter 4 for more on GNU make’s handling
of spaces.

The GNU Make Standard Library 213

merge

merge is the opposite of split. It takes a list and outputs a string with a char-
acter between each list element:

merge

Arguments: 1: The character to put between fields
 2: A list to merge into a string
Returns: A single string, list elements are separated by the character in
 the first argument

tr

You use the tr function to translate individual characters, and it’s a build-
ing block for creating the uc and lc functions:

tr

Arguments: 1: The list of characters to translate from
 2: The list of characters to translate to
 3: The text to translate
Returns: The text after translating characters

uc

uc performs simple uppercasing of the alphabet a-z:

uc

Arguments: 1: Text to uppercase
Returns: The text in uppercase

lc

Finally, we have lc:

lc

Arguments: 1: Text to lowercase
Returns: The text in lowercase

This performs simple lowercasing of the alphabet A-Z.

Set Manipulation Functions
Sets are represented by sorted, deduplicated lists. To create a set from a list,
use set_create or start with the empty_set and set_insert individual elements.
The empty set is defined by the variable empty_set.

214 Chapter 6

For example, a makefile could keep track of all the directories that it
made using the marker technique discussed in “Making Directories” on
page 131:

MADE_DIRS := $(empty_set)

marker = $1.f
make_dir = $(eval $1.f: ; @$$(eval MADE_DIRS := $$(call \
set_insert,$$(dir $$@),$$(MADE_DIRS))) mkdir -p $$(dir $$@); \
touch $$@)

all: $(call marker,/tmp/foo/) $(call marker,/tmp/bar/)
 @echo Directories made: $(MADE_DIRS)

$(call make_dir,/tmp/foo/)
$(call make_dir,/tmp/bar/)

Updating the make_dir function (which creates rules to make directo-
ries) with a call to set_insert means that the variable MADE_DIRS will keep
track of the set of directories created.

In a real makefile, many directories would likely be built, and using a
set would be an easy way to discover which had been built at any point.

Note that because a set is implemented as a GNU make list, you can’t
insert an item that contains a space.

set_create

You create a set by using the set_create function:

set_create

Arguments: 1: A list of set elements
Returns: The newly created set

It takes a list of elements and adds them to a set. The set itself is returned.
Note that set elements may not contain spaces.

set_insert

Once a set has been created using set_create, you can add an element to it
using set_insert:

set_insert

Arguments: 1: A single element to add to a set
 2: A set
Returns: The set with the element added

The GNU Make Standard Library 215

set_remove

To remove an element from a set, call set_remove:

set_remove

Arguments: 1: A single element to remove from a set
 2: A set
Returns: The set with the element removed

It is not an error to remove an element from a set when that element
was not present.

set_is_member

To test whether an element is a member of a set, call set_is_member. It returns
a Boolean value indicating whether the element was present:

set_is_member

Arguments: 1: A single element
 2: A set
Returns: $(true) if the element is in the set

set_union

You merge two sets together by calling the set_union function on the two
sets. The merged set is returned:

set_union

Arguments: 1: A set
 2: Another set
Returns: The union of the two sets

set_intersection

To determine the elements common to two sets, use set_intersection. It
returns the set of elements that were present in both sets passed in as
arguments:

set_intersection

Arguments: 1: A set
 2: Another set
Returns: The intersection of the two sets

216 Chapter 6

set_is_subset

It is sometimes useful to know if one set is a subset of another, which you
can test by calling set_is_subset:

set_is_subset

Arguments: 1: A set
 2: Another set
Returns: $(true) if the first set is a subset of the second

set_is_subset returns a Boolean value indicating whether the first set is
a subset of the second.

set_equal

To determine if two sets are equal, call set_equal:

set_equal

Arguments: 1: A set
 2: Another set
Returns: $(true) if the two sets are identical

set_equal returns $(true) if the two sets have exactly the same elements.

Associative Arrays
An associative array maps a key value (a string with no spaces in it) to a single
value (any string). Associative arrays are sometimes referred to as maps or
even hash tables (although that’s an implementation detail, and the GMSL
associative arrays do not use hashing).

You can use associative arrays as lookup tables. For example:

C_FILES := $(wildcard *.c)

get-size = $(call first,$(shell wc -c $1))
$(foreach c,$(C_FILES),$(call set,c_files,$c,$(call get-size,$c)))

$(info All the C files: $(call keys,c_files))
$(info foo.c has size $(call get,c_files,foo.c))

This small makefile gets a list of all the .c files in the current directory
and their sizes, and then it makes an associative array mapping from a file-
name to its size.

The get-size function uses wc to get the number of bytes in a file.
The C_FILES variable contains all the .c files in the current directory. The
$(foreach) uses the GMSL set function to set a mapping in an associative
array called c_files between each .c file and its size.

The GNU Make Standard Library 217

Here’s an example run:

$ make
All the C files: bar.c foo.c
foo.c has size 551

The first line is a list of all the .c files found; it’s printed using the keys
function to get all the keys in the associative array. The second line comes
from looking up the length of foo.c using get.

set

The GMSL keeps internal track of named associative arrays, but it is not
necessary to explicitly create them. Simply call set to add elements to the
array, and the array will be created if it does not exist. Note that array keys
cannot contain spaces.

set

Arguments: 1: Name of associative array
 2: The key value to associate
 3: The value associated with the key
Returns: Nothing

get

To retrieve an item from an associate array, call get. If the key is not pres-
ent, get will return an empty string.

get

Arguments: 1: Name of associative array
 2: The key to retrieve
Returns: The value stored in the array for that key

keys

The keys function returns a list of all the keys present in an associative
array. You can use this with $(foreach) to iterate an associative array:

keys

Arguments: 1: Name of associative array
Returns: A list of all defined keys in the array

218 Chapter 6

defined

To test whether a key is present in an associated array, call defined:

defined

Arguments: 1: Name of associative array
 2: The key to test
Returns: $(true) if the key is defined (i.e., not empty)

defined returns a Boolean indicating whether the key was defined or not.

Named Stacks
A stack is an ordered list of strings (with no spaces in them). In GMSL,
stacks are stored internally, and they have names, like associative arrays do.
For example:

traverse-tree = $(foreach d,$(patsubst %/.,%,$(wildcard $1/*/.)), \
$(call push,dirs,$d)$(call traverse-tree,$d))

$(call traverse-tree,sources)

dump-tree = $(if $(call sne,$(call depth,dirs),0),$(call pop,dirs) \
$(call dump-tree))

$(info $(call dump-tree))

This small makefile uses a stack to follow a tree of directories.

traverse-tree

The traverse-tree function finds all the subdirectories of its argument (stored
in $1) using the $(wildcard) function to find the . file that is always present
in a directory. It uses the $(patsubst) function to strip off the trailing /. from
each value returned by $(wildcard) to get the full directory name.

Before it traverses down into that directory, it pushes the directory
found onto a stack called dirs.

dump-tree

The dump-tree function pops items off the dirs tree until there are none left
(until the depth becomes 0).

Listing 6-1 shows a directory structure.

$ ls -R sources
sources:
bar foo

sources/bar:
barsub

The GNU Make Standard Library 219

sources/bar/barsub:

sources/foo:
subdir	 subdir2

sources/foo/subdir:
subsubdir

sources/foo/subdir/subsubdir:

sources/foo/subdir2:

Listing 6-1: A directory structure

If this directory structure exists under sources, the makefile will output:

sources/foo sources/foo/subdir2 sources/foo/subdir sources/foo/subdir/
subsubdir sources/bar sources/bar/barsub

If it’s desirable to traverse the directory tree in a depth-first fashion, you
can use the stack functions to define dfs, which searches a directory tree
and builds the dirs stack containing the directories in depth-first order:

__dfs = $(if $(call sne,$(call depth,work),0),$(call push,dirs,$(call \
peek,work)$(foreach d,$(patsubst %/.,%,$(wildcard $(call \
pop,work)/*/.)),$(call push,work,$d)))$(call __dfs))

dfs = $(call push,work,$1)$(call __dfs)

$(call dfs,sources)

dump-tree = $(if $(call sne,$(call depth,dirs),0),$(call pop,dirs) $(call \
dump-tree))

$(info $(call dump-tree,dirs))

The dump-tree function hasn’t changed (it just outputs everything in
the stack by successive calls to pop). But the dfs function is new. It uses a
working stack called work to keep track of directories to visit. It first pushes
the starting directory onto the work stack and then calls the __dfs helper.

The real work is done by __dfs. It pushes the current directory onto the
dirs stack, pushes all the children of that directory onto the work stack, and
then it recurses. Recursion stops when the work stack is empty.

The output for the directory structure in Listing 6-1 is now:

sources/bar/barsub sources/bar sources/foo/subdir/subsubdir sources/foo/subdir
sources/foo/subdir2 sources/foo sources.

220 Chapter 6

push

Anyone who has used a stack will be familiar with pushing and popping ele-
ments. The GMSL stack functions are very similar. To add an element to the
top of the stack, call push:

push

Arguments: 1: Name of stack
 2: Value to push onto the top of the stack (must not contain
 a space)
Returns: None

pop

To retrieve the top element, call pop:

pop

Arguments: 1: Name of stack
Returns: Top element from the stack after removing it

peek

The peek function operates like pop but doesn’t remove the top stack ele-
ment; it just returns its value:

peek

Arguments: 1: Name of stack
Returns: Top element from the stack without removing it

depth

Finally, you can call depth:

depth

Arguments: 1: Name of stack
Returns: Number of items on the stack

depth determines how many elements are present on the stack.

Function Memoization
To reduce the number of calls to slow functions, such as $(shell), a single
memoization function is provided. For example, suppose a makefile needs
to know the MD5 values of various files and defines a function md5.

md5 = $(shell md5sum $1)

The GNU Make Standard Library 221

That’s a pretty expensive function to call (because of the time md5sum
would take to execute), so it would be desirable to call it only once for each
file. A memoized version of the md5 function looks like this:

md5once = $(call memoize,md5,$1)

It will call the md5sum function just once for each inputted filename and
record the returned value internally so that a subsequent call to md5once with
the same filename returns the MD5 value without having to run md5sum. For
example:

$(info $(call md5once,/etc/passwd))
$(info $(call md5once,/etc/passwd))

This prints out the MD5 value of /etc/passwd twice but executes md5sum
only once.

The actual memoize function is defined using the GMSL associative array
functions:

memoize

Arguments: 1: Name of function to memoize
 2: String argument for the function
Returns: Result of $1 applied to $2 but only calls $1 once for each unique $2

Miscellaneous and Debugging Facilities
Table 6-1 shows constants that GMSL defines.

Table 6-1: GMSL Constants

Constant Value Purpose
true T The Boolean value true
false (an empty string) The Boolean value false
gmsl_version 1 1 7 Current GMSL version number

(major minor revision)

You access these constants as normal GNU make variables by wrapping
them in $() or ${}.

gmsl_compatible

You know the gmsl_compatible function from “Checking the GMSL Version”
on page 189:

gmsl_compatible

Arguments: List containing the desired library version number (major minor
 revision)

222 Chapter 6

Returns: $(true) if the current version of the library is compatible
 with the requested version number, otherwise $(false)

In Chapter 1, you saw a recipe for outputting variable values using a
pattern rule with target print-%. Because this is such a useful rule, GMSL
defines its own gmsl-print-% target that you can use to print the value of any
variable defined in a makefile that includes GMSL.

For example:

include gmsl

FOO := foo bar baz
all:

gmsl-print-%

gmsl-print-% can be used to print any makefile variable, including variables
inside GMSL. For example, make gmsl-print-gmsl_version would print the cur-
rent GMSL version.

gmsl-print-% (target not a function)

Arguments: The % should be replaced by the name of a variable that you
 wish to print
Action: Echoes the name of the variable that matches the % and its value

assert

As discussed in “Makefile Assertions” on page 55, it can be useful to have
assertions in a makefile. GMSL provides two assertion functions: assert and
assert_exists.

assert

Arguments: 1: A boolean that must be true or the assertion will fail
 2: The message to print with the assertion
Returns: None

assert_exists

To assert that an individual file or directory exists, GMSL provides the
assert_exists function:

assert_exists

Arguments: 1: Name of file that must exist, if it is missing an assertion
 will be generated
Returns: None

The GNU Make Standard Library 223

Environment Variables
Table 6-2 shows GMSL environment variables (or command line overrides),
which control various bits of functionality.

Table 6-2: GMSL Environment Variables

Variable Purpose
GMSL_NO_WARNINGS If set, prevents GMSL from outputting warning messages. For

example, arithmetic functions can generate underflow warnings.
GMSL_NO_ERRORS If set, prevents GMSL from generating fatal errors: division by

zero or failed assertions are fatal.
GMSL_TRACE Enables function tracing. Calls to GMSL functions will result

in name and arguments being traced. See “Tracing Variable
Values” on page 47 for a discussion of makefile tracing.

These environment variables can all be set in the environment or on
the command line.

For example, this makefile contains an assertion that will always fail,
stopping the make process:

include gmsl

$(call assert,$(false),Always fail)

all:

Setting GMSL_NO_ERRORS prevents the assertion from stopping the make
process. In that case the output of the assert is hidden and make continues
normally:

$ make
Makefile:5: *** GNU Make Standard Library: Assertion failure: Always fail.
Stop.
$ make GMSL_NO_ERRORS=1
make: Nothing to be done for `all'.

A few well-placed GMSL assertions in a makefile can make a big differ-
ence. By checking for makefile prerequisites (such as the presence of a spe-
cific file or that a compiler has a certain version number), a conscientious
makefile writer can alert a user to a problem without forcing them to debug
the often arcane output from make.

Numbers and Symbols
@: command, 95
\ (backslash)

as continuation character, 124
converting slash to, 144
for escaping %, 123
for escaping spaces, 138–139

::= operator, 41
:= operator, 68

and $(shell) call, 111–115
vs. = sign, 112
for variable definition, 22
and variable order, 116–117

$, for variable reference, 123
$* variable, 44, 90
$$ (double dollar signs), 6

for literal $, 123
$$@, 29
$< automatic variable, 86–87
$? automatic variable, 34
= (equal) operator

vs. :=, 112
hidden cost of, 113–115
for variable definition, 22

!= operator, for shell command
execution, 41

> operator, 41
>> operator, for appending to log, 41
(hash mark), for starting

comment, 124
% (percent sign)

escaping, 123
as wildcard, 44

+ (plus sign), for escaped spaces, 141
+= operator, 52
+s function, 141
? (question mark)

converting space to, 140
in filename, 123

?= operator, 5
problem from, 110–111
for setting variable, 110

; (semicolon), for commands on
one line, 4

'' (single quotes), 50
/ (slash), converting to \, 144
8.3 filenames, for Windows, 140

A
$(abspath) function, 33, 146
addition, 162–165
$(addprefix) function, 67
$(addsuffix) function, 67, 190–191
Amdahl’s law, 149

and parallelization limits, 154–157
and function, 20–21, 197
$(and) function, 33
archive (ar) files, 153
archives feature, in GNU make 3.81, 14
arguments

dropping unnecessary, 18
splitting list, 26–27

arithmetic, 161–170
addition and subtraction, 162–165
calculator, 167–170
multiplication and division,

165–167
arrays, associative, 216–218
assert-command-present function, 21–22
assert_exists function, 56–57, 192, 222
assert function, 55–56, 222
assertions, to check inputs, 191–192
assert_target_directory variable, 57–58
associative arrays, in GMSL, 216–218
atomic function, 95
atomic rules, 92–96
automatic variables

in prerequisite list, 136
safety with spaces in filenames, 139
validity and assignment, 29

B
backward incompatibilities, for

GNU make 3.82, 34–35
backslash (\)

as continuation character, 124
converting slash to, 144

I n d e x

226 Index

backslash (\) (continued)
for escaping %, 123
for escaping spaces, 138–139

basename function, 145–146
bill of materials, XML, 170–174
binary numbers, converting decimal to,

204–205
Boolean values, 16–18, 192

in GMSL, 189
logical operations with, 19–21

breakpoint functions, adding, 67
breakpoints

in GNU make debugger, 58
in makefile, 61–62
in patterns, 60–61

build, restarting, 74
build master, rule and call to

$(make), 96
built-in functions

anatomy of, 176–177
calling, 27–29
new in GNU make 3.81, 32–33

C
cache function, 118–119
cache of directory entries, $(wildcard)

to read, 130–131
caching

speed improvements with, 117–118
variable values, 116–117

calculator, 167–170
call keyword, 21
$(call) function, 189

built-in functions with, 27
case-insensitive comparison, 190
case-sensitive target comparisons, 145
-c command line option, in

GNU make 3.82, 34
.c files, #include statements in, 88
C functions

access to library, 179
arguments, 177

characters, translating, 211
--check-symlink-times option, 14,

30–31
chop function, 208
cleaning in non-recursive make, 103
clean rule, 102, 147

recursive, 148
silent failure of, 148

command line
flags, assertions to enforce

nonuse, 56
options

-d option, 58
-e option, 2, 4, 34
-environment-overrides option, 2
--include-dirt option, 188
-I option, 99, 188
-j4 option, 37
-j option, 37, 93, 121–122,

149–150
-MD option, 91–92
-n option, 52, 103, 121, 123
-p option, 58
running make command

without, 78–79
--trace option, 40, 51

override, 49
setting variable value, 3
variable defined on, 5

commands
action to avoid, 93
detecting, 21–22
; for multiple on one line, 4

commas, in function arguments, 125
comment, # for starting, 124
comparison

case-insensitive, 190
functions for integers, 203–204

COMPILE.C variable, 78, 132
conditionals, undefined variables in,

17–18
constants, 221
continuation character, \ as, 124
counter, auto-incrementing, 116
CPPFLAGS, rebuilding after changes,

77–82
CSV data, splitting into GNU make list,

210–211
CURDIR variable, 145, 158
current directory, 145

finding full path for, 146

D
data types, in Guile, 181
date command, 111, 196
debugger, help for, 66
debugging makefiles, 43–76

dumping every makefile variable,
45–46

Index 227

GNU make debugger for, 58–64
interactive debugger in remake

project, 72–74
printing makefile variable value,

43–45
tracing rule execution, 51–55
tracing variable values, 47–51

dec2bin function, 204–205
dec2hex function, 204–205
dec2oct function, 204–205
dec function, 202
decimal numbers, converting to

hexadecimal, binary, or
octal, 204–205

decode user-defined function, 162, 168
decrement function, 169
decrementing, 162
.DEFAULT_GOAL variable, 32
define directive, 37

for newline, 124
delayed variable assignment, 22–24
deleted files, making disappear from

dependencies, 90–91
deleting sentinel file, 96
dependencies

automatic generation, 86–92
defining, 102–103
generating rules expressing, 87–88
make process and information

on, 96
making deleted files disappear

from, 90–91
missing, 150–151
of submodules, 105

dependency syntax, 86
depth function, 220
dfs function, 219
directories

building hierarchy of, 131–137
checking for existence, 57
count of files in, 111
current, 145

finding full path for, 146
for current makefile, 145
list for search, 31
order-only prerequisite to build,

135–136
as phony target, 154
for running GNU make, 96
$(shell) call to create, 133
testing for existence, 133

traversing, 219
$(wildcard) to read cache of entries,

130–131
directory marker file, 134–135
dir function, 145–146
divide function, 166, 168, 201
division, 165–167
.dll file, 94
documentation

print-help function for, 185
for targets, 182

double dollar signs ($$), for literal $, 123
double function, 163, 202, 203
dumping variables, 45–46
duplicates, removing from list, 28, 194
dynamic breakpoints, in GNU make

debugger, 65–69
dynamic objects, loading, 38

E
-e command line option, 2, 4, 34
else, non-nested, 30–31
else-if feature, in GNU make 3.81, 14
empty file, opening, 42
empty_set variable, 213
empty string

as Boolean value, 16–17
ifdef and, 17

empty variable, vs. undefined
variable, 37

endif, 5
environment

command use of, 6–7
$(shell), 7
shell script for adding variables, 9

environment variables, 223
getting into GNU make, 1–3
in GMSL, 223
removing, 6–7

eq function, 164, 168
equal (=) operator

vs. :=, 112
hidden cost of, 113–115
for variable definition, 22

error
from missing hidden target, 121
recursion as, 69

$(error) function, q command to call, 63
error messages

from mixed pattern targets, 34
for software missing from build

system, 21

228 Index

escaping rules, 122–127
eval_available function, 16
--eval command line option, 36
$(eval) function, 23–24

detecting, 16
side effects from, 116
and variable caching, 115–120

expand command, 76
export directive, 7

F
false constant, 221
features, expanding list of supported,

31–32
.FEATURES variable, 13, 14–15, 31–32
file-exists function, 181
$(file) function, 41–42
filenames

clean rule and, 147
with spaces, 137–141

files
creating or appending, 41
detecting change, 83–85
getting list of, 127

filled cache, 130
$(filter) function, 28, 32
$(filter-out) function, 46, 164, 165
_find function, 99
finding, program on path, 190–191
findpath function, 190–191
findstring function, 177
first function, 207
$(firstword) function, 24
$(firstword $(origin VAR)) function, 2
flags, for shell, 53
$(flavor) function, 33, 37
FORCE: empty rule, 84
$(foreach) function, 24
Free Software Foundation, GNU make

manual, 1
function.c file, 176
functions

arguments, spaces and
commas in, 125

built-in
anatomy of, 176–177
calling, 27–29

memoization, 220–221
user-defined, 25–29

advanced, 174–179
with Boolean values, 19–21

G
gcc, -MP option, 92
generated code, timestamps on, 82–83
get function, 217
get-url variable, 182
global scope

vs. local scope, 10
of variables, 9

globbing characters, 123
globbing function, 127
gmk_add function, 180
GMSL. See GNU Make Standard

Library (GMSL)
gmsl, 188
_gmsl, 188
gmsl_compatible function, 189–190,

221–222
GMSL_NO_ERRORS environment

variable, 223
GMSL_NO_WARNINGS environment

variable, 223
gmsl-print-%, 222
GMSL reference

associative arrays, 216–218
constants, 221
environment variables, 223
function memoization, 220–221
integer arithmetic functions,

198–203
integer comparison functions,

203–204
list manipulation functions,

205–210
logical operators, 196–198
miscellaneous and debugging

facilities, 221–222
miscellaneous integer functions,

204–205
named stacks, 218–220
set manipulation functions,

213–216
string manipulation functions,

210–213
GMSL_TRACE environment variable, 223
gmsl_version constant, 221
GNU Guile language, 38

data types in, 181
$(guile) function, 15, 38, 180–182
reverse function, 181
storing code in file, 182

Index 229

GNU make
version 3.81

abspath and realpath, 146
features, 14–15, 29–33

version 3.82 features, 15, 34–38
version 4.0

features, 15, 38–41
loadable objects, 179–180
--trace command line option,

54–55
version 4.1, features, 42
version checking, 13–16

GNU make debugger, 58–64
adding breakpoint functions, 67
breakpoints in patterns, 60–61
code, 64–65
dynamic breakpoints, 65–69
help for, 59
information output from, 59
internals, 62–65
stopping, 59
use of, 58–60

GNU Make Standard Library
(GMSL), 187

assertion functions, 55
associative arrays, 216–218
calling functions, 189
checking version, 189–190
environment variables, 223
debugging facilities, 221–223
function memoization, 220–221
importing, 188
integer arithmetic functions,

198–203
integer comparison functions,

203–204
importing, 188
list manipulation functions,

205–210
logical operators, 196–198
miscellaneous integer functions,

204–205
named stacks, 218–220
real-world example, 190–195
reference. See GMSL reference
set manipulation functions,

213–216
string manipulation functions,

210–213
goals, of make command, 183
greater than (gt) operator, 164, 165, 168
gte function, 164, 166, 168

gt function, 164, 165, 168
Guile. See GNU Guile language
$(guile) function, 15, 38, 180–182

H
halve function, 202, 203
hash mark (#), for starting

comment, 124
help, for debugger, 59, 66
help_system.mak file, 185
hexadecimal numbers, converting

decimal to, 204–205
hidden targets, 120–122
hidden temporary file, 151–153
http-get function, 181–182

I
ifcase function, 190
ifdef directive, 16–17, 193–194
ifeq directive, 193–194 if-exists

function, 127–128
$(if) function, 16–17

nested in _DEBUG, 63
ifndef directive, 5

problem from, 110–111
ifneq directive, 20–21, 193–194
importing, GNU Make Standard

Library (GMSL), 188
inc function, 202
include statement, 96
#include statements in .c files, 88
increment function, 169
incrementing, 162
information, output from debugger, 59
$(info text) function, 32
inline directory making, 137
input, assertions to check, 191–192
int_dec function, 202
int_decode function, 199
int_divide function, 201
int_double function, 202
integer arithmetic functions, in GMSL,

198–203
integer comparison functions,

in GMSL, 203–204
int_encode function, 199
int_halve function, 203
int_inc function, 202
int_max function, 201
int_min function, 201

230 Index

int_multiply function, 200
int_plus function, 198–199
int_subtract function, 200

J
jobserver feature, in GNU make 3.81, 14
--jobs option, for parallel execution,

149–150
$(join) function, 163

K
keys function, 217

L
last-element function, 184
last function, 33, 208
$(lastword) function, 25, 33
-L command line option, 30–31
lc function, 190, 213
length function, 210
leq function, 209
less-than (lt) operator, 165, 168
less-than-or-equal (lte) operator, 165,

168, 169
.lib file, rule to build, 94
lines, adding to variable, 38
list manipulation functions, in GMSL,

205–210
lists

applying function to every
member, 27

of documents, PATH from, 211
manipulating, 24–25
removing duplicates from, 28, 194
removing first word from, 25
reversing, 180–181
whitespace and, 205

list-to-path variable, 211
lne function, 209
loadable objects, 179–180
load directive, 15, 38, 179
local scope, vs. global scope, 10
logical operators

with Boolean values, 19–21
built-in, 20–21
in GMSL, 196–198
in preprocessor, 193–194
user-defined, 19–20

lookup tables, associative arrays as, 216
ls function, 129

lt (less than) function, 165, 168
lte (less-than-or-equal) operator, 165,

168, 169

M
make. See GNU make
make-bool function, 196
make clean, 147
MAKECMDGOALS variable, 183
makedepend program, 88

automating and removing, 89
omitting, 91–92

makefile
assertions, 55–58
breakpoints in, 61–62
changes to use signature, 79
environment variables in, 1–3
inserting dynamic breakpoint, 65
rules with no commands, 173
.SECONDEXPANSION definition, 29
self-documenting, 182
variables set in, 44

MAKEFILE_LIST variable, 145, 158
MAKEFLAGS variable, 7
make $(if) function, 67
MAKELEVEL variable, 7
make recipe, for variable value, 44
MAKE_RESTARTS variable, 32–33
MAKE_VERSION variable, 13–14
map function, 27, 82, 191, 206, 208
max function, 163, 168, 201
.md5 file, 83–85

forcing rebuild, 84
md5 function, memoized version, 221
Mecklenburg, Robert, 140
memoization, function, 220–221
merge function, 213
message digest function, 83–85
MFLAGS variable, 7
min function, 163, 168, 201
miscellaneous and debugging facilities,

in GMSL, 221–222
miscellaneous integer functions,

in GMSL, 204–205
mixed pattern targets, error

message from, 34
mkdir command, 132–133
modifying GNU make, 174–176
modules, rules for, 102
multiplication, 165–167
multiply function, 166, 168, 200

Index 231

N
name

of current makefile, finding, 158
of variable, whitespace in, 35

named stacks, in GMSL, 218–220
nand function, 20, 198
ndef (not defined) directive, 5
ne (not-equal) operator, 165, 168
need-help variable, 183–184
newline character, 124
NEWS file, 29
non-blank string, function to

return, 33
non-empty string, as true, 18
non-recursive make command, 96–107
nor function, 20, 198
No rule to make error, 145
not defined (ndef) directive, 5
notdir function, 145–146
not-equal (ne) operator, 165
not function, 19, 197
.NOTPARALLEL, 153

O
.o (object) files

for corresponding .sig files, 79
hack updates to, 85–86
pattern rule to make, 137
unnecessary rebuild, 133

octal numbers, converting decimal to,
204–205

oneshell feature, 15
.ONESHELL target, 36
or function, 19, 20–21, 197

for debugging setting, 192
$(or) function, 33
order-only feature, in GNU make 3.81, 14
order-only prerequisite, to build

directories, 135–136
$(origin) function, 1–3, 26, 45
--output-sync option, 15, 38
override directive, 2–3

P
padding numbers, string

functions for, 205
pairmap function, 207, 208–209
parallel build, 93

hidden targets and, 121–122

parallel execution, 148–157
Amdahl’s law and limits, 154–157
-j or --jobs option, 149–150

parent-makefile variable, 184
PARTS variable, 194
PATH, from document list, 211
paths, 141–146

built-in functions, 145–146
of current makefile, 158
finding program on, 190–191
functions for splitting, 145–146
list of, 142–143
variables to build, 100
and wildcards, 123

$(patsubst) function, 218
pattern rules, 93–94

to build targets, 136–137
%.o: %.c, 12

patterns, breakpoints in, 60–61
pattern-specific variables, 9–13
peek function, 220
percent sign (%)

escaping, 123
as wildcard, 44

plugin_is_GPL_compatible variable, 180
plus function, 162–163, 168, 198–199
plus sign (+), for escaped spaces, 141
pop function, 169, 219, 220
POSIX systems

/ for path separator, 143
case sensitive files in, 144–145
and make, 34

precious files, 137
preprocessor, logical operators in,

193–194
prerequisite list

automatic variables in, 136
of rules, 29

prerequisites, = sign not permitted,
34–35

print command, 76
print-help function, 182–183, 185
printing

commands, 52
every defined variable in makefile,

45–46
makefile variable value, 43–45

print_variable function, 27–28
print_variables function, 28
print_version function, 175
private keyword, 37–38

232 Index

problem solving, splitting argument
list, 26–27

processors, maximum speed based on
number of, 156–157

program, finding on path, 190–191
pushd function, 169
push function, 169, 220
pwd command, 112
PWD environment variable, 145

Q
q command, 63
qs function, 140
question mark (?)

converting space to, 140
in filename, 123

quotation marks, adding to target
names, 67

R
r command (remove breakpoint), 66
realpath function, 33, 146
rebuild

after CPPFLAGS changes, 77–82
example makefile, 78–79
when file’s checksum changes,

82–86
.RECIPEPREFIX variable, 36
recursion

with clean, 148
in dfs function, 219
as error, 69
functions for, 28
with make, 96, 97–98, 153–154

recursively expanded variables, 112
long evaluation time for, 117

recursive variable, = to define, 23
reduce function, 206

recursive implementation, 28
remake project, 69–76

interactive debugger in, 72–74
repeat function, 205
rest function, 208
reverse.c file, 179–180
reverse function, 209

in Guile, 181
Reverse Polish Notation calculator,

167–170
reversing

lists, 180–181
strings, 177–179

rules
definition and variable value, 112
escaping, 122–127
with no commands, 173
order to apply, 35
prerequisite list of, 29
tracing execution, 40
wrapping commands in, 82

running GNU make without command
line options, 78–79

runtime debugging aid, 55

S
second-expansion feature, 136

in GNU make 3.81, 14
.SECONDEXPANSION target, 29, 136
self-documenting makefiles, 182
semicolon (;), for commands on

one line, 4
sentinel file, 94–96

deleting, 96
seq (string equal) function, 169,

192, 211
for debugging setting, 192

sequence function, 204
set_create function, 213, 214
set_equal function, 216
set function, 76, 217
set_insert function, 213, 214
set_intersection function, 215
set_is_member function, 67, 68, 215
set_is_subset function, 216
set manipulation functions, in GMSL,

213–216
setq command, 76
set_remove function, 215
set_union function, 215
s+ function, 141
shared file, problem from, 152
$(shell) call, 49

and :=, 111–115
to create directory, 133
environment, 7
recursively expanded

variables and, 114
which command in, 21

shell command, != operator for
execution, 41

.SHELLFLAGS variable, 36, 52
SHELL hack, 172
shell invocation, single vs. multiple, 36

Index 233

shell script, for adding variables to
environment, 9

SHELL variable
adding $(warning), 53
expanding for breakpoint

handling, 68
redefining, 52

short circuiting functions, 198
shortest-stem feature, 15
'shortest stem' order, for pattern

rules, 35
.sig file, contents, 81–82
signature makefile, 79, 81–82
signature system, limitations, 82
simple variables, := for defining, 23
simply expanded variables, 113
single quotes (''), 50
size function, 206
slash (/), converting to \, 144
Smith, Paul, 91
sne (string not equal) function, 56,

81, 212
$(sort) function, 29
source code control system, timestamps

from, 82–83
spaces. See also whitespace

avoiding in target names, 143
converting to question marks, 140
defining, 125–126
escaping with \ , 138–139
filenames with, 137–141
in function arguments, 125
as list separator, 137

spaces-to-commas function, 125–126
special characters

in makefile, 122
as variable names, 126–127

speed, caching and, 117–118
split function, 190–191, 212
splitting CSV data into GNU make list,

210–211
splitting paths, functions for, 145–146
sq function, 140
stack function, 219
stacks, named, 218–220
STDERR, 114

outputting warning message to,
48–51

STDOUT
printing argument to, 32
$(warning) function output to, 51

stopping debugger, 59

string not equal (sne) function, 56,
81, 212

strings
changing to uppercase, 194
comparing, 56
manipulation functions in GMSL,

210–213
reversing, 177–179

$(strip) function, 144
strlen function, 212
subdirectories, building all .c files

into two, 12–13
sub-makes, 153
submodules, 104–107
$(subst) function, 26, 126, 163
substr function, 212
substring, extracting, 212
subtract function, 168, 200
subtraction, 162–165
suffix function, 145–146
sums, with reduce function, 206–207

T
tab character, 122

as whitespace, 36
target command, 74–75

expand modifier, 76
targets, 65, 92

adding quotation marks to
names, 67

check for presence, 68
documentation for, 182
hidden, 120–122
in makefile, information about, 74
name matching, 142
out-of-date, and rebuilding, 78
pattern rules to build, 136–137

target-specific feature, in
GNU make 3.81, 14

target-specific variables, 9–13
temporary file

clean rule and, 147
hidden, 151–153

timestamps
on directory, 133
on generated code, 82–83
of .md5 file change, 83
from source code control system,

82–83
--trace command line option, 40, 51,

54–55

234 Index

trace log file, redirecting STDERR to, 51
TRACE variable, 48
tracing

rule execution, 51–55
variable values, 47–51

translating characters, 211
traverse-tree function, 218
tr function, 211, 213
Tromey, Tom, 91
true constant, 221
truth, consistent values, 18

U
uc function, 194, 213
undefined variables, in conditionals,

17–18
undefine keyword, 15, 37–38
unexport, 6–7
uniq function, 28, 194, 209
uppercase for string, 194
user-defined functions, 25–29

advanced, 174–179
with Boolean values, 19–21

user-defined variables,
second-expansion, 30

Usman’s law, 147–148
utc-time variable, 182

V
$(value) function, 46
variable_buffer_output function, 177
variables

caching values, 116–117
:= operator for speed, 119
from command output, 41
creating and adding lines to, 38
definitions

on command line, 5
containing commas, 125
in makefiles, 112
specific to target, 50

delayed assignment, 22–24
$* as, 44
$ for reference, 123
dumping, 45–46
$(eval) function and caching,

115–120
function to return flavor of, 33
imported from environment,

overriding, 2

new in GNU make 3.82, 36
printing line of expanded, 114
printing value, 43–45
private keyword, 37–38
recursively expanded, 112
removing from environment, 6–7
requesting values from debugger,

59–60
setting from outside makefile, 3–5
shell script for adding to

environment, 9
simply expanded, 113
target-specific and pattern-specific,

9–13
tracing values, 47–51
undefined in conditionals, 17–18
undefine keyword, 37–38
whitespace in names, 35
working directory as, 112

.VARIABLES variable, 46
versions

automatically incrementing
number, 194–195

checking, 13–16
VERSION variable, 194
vpath directive, list of paths in, 143

W
$(warning) function, 48–51
warnings, of undefined variables, 17
--warn-undefined-variables command

line option, 17
wc function, 206, 216
which command, in $(shell) call, 21
whitespace. See also spaces

around function arguments, 125
checksum and, 85
lists and, 205
$(shell) and, 111
significance of, 18
tab character as, 36
in variable names, 35

wildcard
% as, 44
and path, 123

$(wildcard) function, 34, 90,
127–130, 218

escaping mechanism in, 138
to read cache of directory entries,

130–131
recursive version, 157–158

Index 235

Windows
\ as path separator, 143
8.3 filenames for, 140
case insensitivity, 144–145

$(word) function, 24
$(wordlist) function, 24, 25
$(words) function, 24, 162
working directory, call to get, 114–115
work stack, 219

X
XML document

bill of materials, 170–174
with example makefile

structure, 171
-x option, for shell, 52
xor function, 197
xor operator, 20

Z
zip function, 207

Updates
Visit http://nostarch.com/gnumake/ for updates, errata, and other
information.

phone:
800.420.7240 or

415.863.9900

email:
sales@nostarch.com

web:
www.nostarch.com

The Linux Programming
Interface
A Linux and UNIX® System
Programming Handbook
by michael kerrisk

october 2010, 1552 pp., $99.95
isbn 978-1-59327-220-3
hardcover

Think like a programmer
An Introduction to
Creative Problem Solving
by v. anton spraul

august 2012, 256 pp., $34.95
isbn 978-1-59327-424-5

The Art of r Programming
A Tour of Statistical Software Design
by norman matloff

october 2011, 400 pp., $39.95
isbn 978-1-59327-384-2

absolute OpenBSD,
2nd edition
UNIX for the Practical Paranoid
by michael w. lucas

april 2013, 536 pp., $59.95
isbn 978-1-59327-476-4

how linux works,
2nd edition
What Every Superuser
Should Know
by brian ward

november 2014, 392 pp., $39.95
isbn 978-1-59327-567-9

More no-nonsense books from No Starch Press

The linux command line
A Complete Introduction
by william e. shotts, jr.
january 2012, 480 pp., $39.95
isbn 978-1-59327-389-7

Safety Area: All Text, Logos & Barcode should remain inside the Pink Dotted Lines

Bleed Area: All Backgrounds should extend to, but not past, the Blue Dotted Lines

J O H N G R A H A M - C U M M I N G

T H E
G N U M A K E

B O O K

T H E
G N U M A K E

B O O K

T
H

E
 G

N
U

 M
A

K
E

 B
O

O
K

T
H

E
 G

N
U

 M
A

K
E

 B
O

O
K

G
R

A
H

A
M

-
C

U
M

M
IN

GSHELVE IN:
COM

PUTERS/PROGRAM
M

ING

$34.95 ($40.95 CDN)

www.nostarch.com

TH E F I N EST I N G E E K E NTE RTA I N M E NT ™

S O L V E D .
P R O B L E M

G N U M A K E ,

S O L V E D .
P R O B L E M

G N U M A K E ,

GNU make is the most widely used build automation
tool, but it can be intimidating for new users and
its terse language can be tough to parse for even
experienced programmers. Those who run into dif-

potential untapped.
unsolved problems behind and GNU make’s vast
ficulties face a long, involved struggle, often leaving

The GNU Make Book demystifies GNU make and

a fast, thorough rundown of the basics of variables,
shows you how to use its best features. You’ll find

rules, targets, and makefiles. Learn how to fix waste-
fully long build times and other common problems,
and gain insight into more advanced capabilities,
such as complex pattern rules. With this utterly prag-

You’ll also learn how to:

• Master user-defined functions, variables, and path

progress toward becoming a more effective user.
matic manual and cookbook, you’ll make rapid

• Handle automatic dependency generation,
rebuilding, and non-recursive make

• Modify the GNU make source and take advantage
of the GNU Make Standard Library

handling

• Weigh the pitfalls and advantages of GNU make
parallelization

GNU make is known for being tricky to use, but it

will find The GNU Make Book to be an indispensable
guide to this indispensable tool.

based POPFile email filter and successfully petitioned

A B O U T T H E A U T H O R

John Graham-Cumming is a longtime GNU make
expert. He wrote the acclaimed machine learning–

the British government to apologize for its treatment of

from Oxford University and works at CloudFlare.
Alan Turing. He holds a doctorate in computer security

doesn’t have to be. Seasoned users and newbies alike

• Create makefile assertions and debug makefiles

Technical review
by Paul Smith,

maintainer of GNU make

	Brief Contents

	Contents in Detail

	Preface
	Chapter 1: The Basics Revisited
	Getting Environment Variables into GNU make
	Setting Variables from Outside the Makefile
	The Environment Used by Commands
	The $(shell) Environment
	Target-Specific and Pattern-Specific Variables
	Target-Specific Variables
	Pattern-Specific Variables

	Version Checking
	MAKE_VERSION
	.FEATURES
	Detecting $(eval)

	Using Boolean Values
	Undefined Variables in Conditionals
	Consistent Truth Values

	Logical Operations Using Boolean Values
	User-Defined Logical Operators
	Built-in Logical Operators (GNU make 3.81 and Later)

	Command Detection
	Delayed Variable Assignment
	Simple List Manipulation
	User-Defined Functions
	The Basics
	Argument-Handling Gotchas
	Calling Built-in Functions

	Recent GNU make Versions: 3.81, 3.82, and 4.0
	What’s New in GNU make 3.81
	What’s New in GNU make 3.82
	What’s New in GNU make 4.0
	What’s New in GNU make 4.1

	Chapter 2: Makefile Debugging
	Printing the Value of a Makefile Variable
	Dumping Every Makefile Variable
	Tracing Variable Values
	Tracing Variable Use
	How the Variable Tracer Works

	Tracing Rule Execution
	An Example
	The SHELL Hack
	An Even Smarter SHELL Hack
	GNU make 4.0 Tracing

	Makefile Assertions
	assert
	assert_exists
	assert_target_directory

	An Interactive GNU make Debugger
	The Debugger in Action
	Breakpoints in Patterns
	Breakpoints in Makefiles
	Debugger Internals

	Dynamic Breakpoints in the GNU make Debugger
	Dynamic Breakpoints in Action
	The Easy Part
	The Trick
	Rocket Science

	An Introduction to remake
	Just Print and Trace
	Debugging
	Targets, Macro Values, and Expansion

	Chapter 3: Building and Rebuilding
	Rebuilding When CPPFLAGS Changes
	An Example Makefile
	Changing Our Example Makefile
	How Signature Works
	Limitations

	Rebuilding When a File’s Checksum Changes
	An Example Makefile
	Digesting File Contents
	The Modified Makefile
	The Hack in Action
	Improving the Code

	Automatic Dependency Generation
	An Example Makefile
	makedepend and make depend
	Automating makedepend and Removing make depend
	Making Deleted Files Disappear from Dependencies
	Doing Away with makedepend
	Using gcc -MP

	Atomic Rules in GNU make
	What Not to Do
	Using Pattern Rules
	Using a Sentinel File

	Painless Non-recursive make
	A Simple Recursive Make
	A Flexible Non-recursive make System
	Using the Non-recursive make System
	What About Submodules?

	Chapter 4: Pitfalls and Problems
	GNU make Gotcha: ifndef and ?=
	What ?= Does
	What ifndef Does

	$(shell) and := Go Together
	$(shell) Explained
	The Difference Between = and :=
	The Hidden Cost of =

	$(eval) and Variable Caching
	About $(eval)
	An $(eval) Side Effect
	Caching Variable Values
	Speed Improvements with Caching
	A Caching Function
	Wrapping Up

	The Trouble with Hidden Targets
	An Unexpected Error if the Hidden Target Is Missing
	The -n Option Fails
	You Can’t Parallelize make
	make Does the Wrong Work if the Hidden Target Is Updated
	You Can’t Direct make to Build foo.o

	GNU make’s Escaping Rules
	Dealing with $
	Playing with %
	Wildcards and Paths
	Continuations
	Comments
	I Just Want a Newline!
	Function Arguments: Spaces and Commas
	The Twilight Zone

	The Trouble with $(wildcard)
	$(wildcard) Explained
	Unexpected Results
	Unexpected Results Explained

	Making Directories
	An Example Makefile
	What Not to Do
	Solution 1: Build the Directory When the Makefile Is Parsed
	Solution 2: Build the Directory When all Is Built
	Solution 3: Use a Directory Marker File
	Solution 4: Use an Order-Only Prerequisite to Build the Directory
	Solution 5: Use Pattern Rules, Second Expansion, and a Marker File
	Solution 6: Make the Directory in Line

	GNU make Meets Filenames with Spaces
	An Example Makefile
	Escape Spaces with \
	Turn Spaces into Question Marks
	My Advice

	Path Handling
	Target Name Matching
	Working with Path Lists
	Lists of Paths in VPATH and vpath
	Using / or \
	Windows Oddity: Case Insensitive but Case Preserving
	Built-in Path Functions and Variables
	Useful Functions in 3.81: abspath and realpath

	Usman’s Law
	The Human Factor
	Poor Naming
	Silent Failure
	Recursive Clean

	Pitfalls and Benefits of GNU make Parallelization
	Using -j (or -jobs)
	Missing Dependencies
	The Hidden Temporary File Problem
	The Right Way to Do Recursive make
	Amdahl’s Law and the Limits of Parallelization

	Making $(wildcard) Recursive
	Which Makefile Am I In?

	Chapter 5: Pushing the Envelope
	Doing Arithmetic
	Addition and Subtraction
	Multiplication and Division
	Using Our Arithmetic Library: A Calculator

	Making an XML Bill of Materials
	An Example Makefile and BOM
	How It Works
	Gotchas

	Advanced User-Defined Functions
	Getting Started Modifying GNU make
	Anatomy of a Built-In Function
	Reverse a String

	GNU make 4.0 Loadable Objects
	Using Guile in GNU make
	Self-Documenting Makefiles
	Documenting Makefiles with print-help
	The Complete help-system.mak

	Chapter 6: The GNU Make Standard Library
	Importing the GMSL
	Calling a GMSL Function
	Checking the GMSL Version
	Example Real-World GMSL Use
	Case-Insensitive Comparison
	Finding a Program on the Path
	Using Assertions to Check Inputs
	Is DEBUG Set to Y?
	Is DEBUG Set to Y or N?
	Using Logical Operators in the Preprocessor
	Removing Duplicates from a List
	Automatically Incrementing a Version Number

	GMSL Reference
	Logical Operators
	Integer Arithmetic Functions
	Integer Comparison Functions
	Miscellaneous Integer Functions
	List Manipulation Functions
	String Manipulation Functions
	Set Manipulation Functions
	Associative Arrays
	Named Stacks
	Function Memoization
	Miscellaneous and Debugging Facilities
	Environment Variables

	Index

	Support the Electronic Frontier Foundation

	Updates

